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Abstract

Bousquet-Mélou and Schaeffer gave in 2000 a bijective enumeration of some
planar maps called constellations. In 2019, Lepoutre described a bijection
between bicolorable maps of arbitrary genus and some unicellular maps of
the same genus.

We present a bijection between constellations of higher genus and some
unicellular maps that generalizes both existing bijections at the same time.

Using this bijection, we manage to enumerate a subclass of constellations
on the torus, proving that its generating function is a rational function of
the generating function of some trees.

keywords: combinatorics, maps, enumeration, bijection, blossoming
map, constellation, rationality

MSC2020: 05C30, 05C10
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Resum

Bousquet-Mélou i Schaeffer donaren el 2000 una enumeració bijectiva de certs
mapes anomenats constel·lacions. El 2019, Lepoutre va descriure una bijecció
entre mapes biacoloribles de gènere arbitrari i certs mapes unicel·lulars del
mateix gènere.

Presentem una bijecció entre constel·lacions de gènere superior i certs
mapes unicel·lulars que generalitza les dues bijeccions existents alhora.

Fent servir aquesta bijecció, enumerem una subclasse de constel·lacions
sobre el tor, demostrant que llur funció generadora és una funció racional de
la funció generadora de certs arbres.

paraules clau: combinatòria, mapes, enumeració, bijecció, mapa florit,
constel·lació, racionalitat

MSC2020: 05C30, 05C10
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Resumen

Bousquet-Mélou y Schaeffer dieron en el año 2000 una enumeración biyectiva
de ciertos mapas llamados constelaciones. En 2019, Lepoutre describió una
biyección entre mapas bicoloreables de género arbitrario y ciertos mapas
unicelulares del mismo género.

Presentamos una biyección entre constelaciones de género superior y cier-
tos mapas unicelulares que generaliza las dos biyecciones existentes a la vez.

Usando esta biyección, enumeramos una subclase de constelaciones sobre
el toro, demostrando que su función generadora es una función racional de
la función generadora de ciertos árboles.

palabras clave: combinatoria, mapas, enumeración, biyección, mapa
floreciente, constelación, racionalidad

MSC2020: 05C30, 05C10
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Chapter 1

Introduction

Maps are embeddings of graphs in a surface. They are fundamental com-
binatorial objects that appear in many other fields of mathematics such as
algebra and mathematical physics. The enumeration of planar maps began
with the work of Tutte in the sixties [10]. In his work, Tutte enumerated
a variety of families of maps, obtaining remarkably simple formulas. For
example, he showed that the number of planar maps with n edges is

2(2n)!3n

n!(n+ 2)!
.

His methods are based on the recursive combinatorial decomposition of maps
and the equations obtained usually require the introduction of additional
parameters called catalytic variables. In the late eighties, these techniques
were extended to maps on surfaces of higher genus by Bender and Canfield
[1], [2].

The simplicity of the formulas obtained by Tutte called for bijective
demonstrations. Cori and Vauquelin gave the first bijective proof of the
enumeration of planar maps in 1981 [7]. After them, many others continued
this work, starting with Schaeffer, who gave numerous bijective constructions
in the late nineties. In 1997, he introduced blossoming trees to formulate a
new bijection for planar maps [9]. In 2000, Bousquet-Mélou and Schaeffer
gave a bijection between planar constellations and some blossoming trees,
which allowed them to prove enumerative formulas for constellations [3]. It
should be mentioned that there is a second trend of bijections of maps based
on trees decorated with some integers that encode metric properties of the
maps. These bijections were applied to planar constellations in [4] and were
later extended to higher genus in [5].

In positive genus, the natural equivalent of trees are unicellular maps.
Chapuy, Marcus and Schaeffer introduced in [6] some techniques to analyse
these unicellular maps by decomposing them into schemes with branches.
In 2019, Lepoutre gave a blossoming bijection for bicolorable maps of any
genus, which are a particular case of constellations [8].

6



The purpose of our work is to extend the bijection of [3] to higher genus.
To do so, we reformulate their planar bijection inspired by the work of Lep-
outre. Our main result is that there is a blossoming bijection between con-
stellations and some blossoming unicellular maps that extends not only the
planar blossoming bijection of [3], but the bijection of [8] too. We also enu-
merate a particular case of constellations on the torus using this bijection.

The report is structured in the following way. In Chapter 2, we give some
elementary notions of maps. Chapters 3, 4 and 5 describe the objects that we
use. Chapter 6 is dedicated to proving our main bijective result. In chapter
7, we show how our maps can be rerooted, which is needed to enumerate
them. Finally, in Chapter 8 we give the already mentioned enumeration.

The results of these bachelor thesis will be exploited in a nearby future
to get further results, to be published elsewhere.
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Chapter 2

Preliminaries

2.1 Maps

Definition 2.1. A map M of genus g is a proper embedding of a graph in
Sg, the torus with g holes, such that the maximal connected components of
Sg \M are contractible. These components are called faces. Multiple edges
and loops are allowed. Maps are considered up to orientation preserving
homeomorphisms.

This definition of maps is a very geometrical one. But maps are, in fact,
purely combinatorial objects. Indeed, a map is completely determined by
the cyclic order of edges around every vertex. This description allows us to
encode maps using permutations, which leads to an algebraic approach to
the subject. We will not consider this point of view here.

Maps of genus 0 are called planar maps. They receive this name because
embedding graphs in the sphere or in the plane is essentially the same. The
stereographical projection, for instance, can produce a plane embedding from
a sphere embedding. All the faces of a planar map embedded in the plane
are contractible except for one, the exterior face, which is homeomorphic to
the complement of a disk.

The following is a classical result.

Proposition 2.2 (Euler’s formula). Maps of genus g satisfy the relation

v − e+ f = 2− 2g,

where v, e and f denote the number of vertices, edges and faces, respectively.

Definition 2.3. In a map, a corner is a couple of consecutive edges around
a vertex. Equivalently, a corner can be seen as an incidence between a face
and a vertex. The degree of a vertex or face is its number of corners.

Definition 2.4. A rooted map is a map with a marked corner, which is
called the root corner (or, simply, root). This root corner naturally defines
a root vertex and a root face.
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Definition 2.5. In a rooted map, we have a notion of clockwise and coun-
terclockwise when following contractible cycles. Precisely, we say that a tour
around a contractible cycle is clockwise (resp. counterclockwise) if the root
face lies on the left (resp. right) side of it. Tours around the root face (which
is a contractible cycle) are an exception to this and follow the opposite con-
vention.

Definition 2.6. In maps, edges join two (possibly equal) vertices and sepa-
rate two (possibly equal) faces. Thus, given a map M , we can define its dual
map M∗ in the following way (Figure 2.1). The faces (resp. vertices) of M
become the vertices (resp. faces) of M∗ and the dual of an edge e joining
vertices v1 and v2 and separating faces f1 and f2 is an edge e∗ joining vertices
f∗
1 and f∗

2 and separating faces v∗1 and v∗2.

Note that the dual of a corner is “itself” (i.e., the same vertex-face inci-
dence) and that dualization is involutive: (M∗)∗ = M .

Figure 2.1: A planar map and its dual.

Definition 2.7. A unicellular map is a map with a single face.
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2.2 Plane trees

Definition 2.8. A plane tree is a unicellular map of genus 0.

Definition 2.9. In plane trees, vertices of degree 1 are called leaves.

Since plane trees are maps, they can also be rooted on a corner.

Definition 2.10. In rooted plane trees, any vertex u different from the root
has a parent v, which is defined as the first vertex in its unique path towards
the root. In this case, u is said to be the child of v.

Definition 2.11. The lexicographical order of the vertices of a rooted plane
tree is the order determined by the clockwise tour around its unique face,
starting at the root. More specifically, we say that vertex v1 precedes vertex
v2 in lexicographical order (v1 ≺lex v2 or, simply, v1 ≺ v2) if v1 is encountered
before v2 in this tour.

Plane trees receive this name because they are embeddings of trees (con-
nected graphs with no cycles) in the plane (or, equivalently, in the sphere).
The cyclic order of the edges around any vertex defined by the embedding
allows us define this lexicographical order. But trees could be embedded in
surfaces of higher genus. In this case, they would not be maps, since not all
faces would be contractible, but the embedding would still define a cyclic or-
der of the edges around any vertex. Therefore, we can (and will) talk about
the lexicographical order of the vertices of a rooted embedded tree even if it
is not a plane tree.

2.3 Orientations

Definition 2.12. An orientation of a map is an orientation (or direction) of
each of its edges. An oriented map is a map endowed with an orientation. An
oriented edge has a left side and a right side, which are defined to coincide
with the usual notions of left and right when the edge points upwards.

Definition 2.13. In a rooted map, we say that an orientation is accessible
if there exists an oriented path from the root vertex to any other vertex.

Definition 2.14. Let M be a rooted map endowed with an accessible ori-
entation. The leftmost Breadth-First Search (BFS) exploration tree of M is
the one produced by Algorithm 1.

Figure 2.2 contains an example of the leftmost BFS exploration tree of
a map of genus 1. When representing maps of genus 1, we draw them in a
thick square, the parallel sides of which should be identified to obtain the
torus.
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Figure 2.2: In red, the leftmost BFS exploration tree of a rooted, accessibly
oriented map of genus 1. The root is pointed by the double arrow.
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Algorithm 1 Leftmost BFS traversal of a rooted planar map M

let Q be a queue
let r be the root vertex of M
mark r as visited
Q.enqueue (r)
while Q is not empty do
u = Q.dequeue ()
order the edges that depart from u counterclockwise around u, starting
at the root corner if u is the root vertex, or starting at the edge travelled
to visit u otherwise. Name these edges e1, . . . , ek
for i=1 to k do

let v be the destination of ei
if v is not visited then

mark ei as travelled
mark v as visited
Q.enqueue (v)

end if
end for

end while

Proposition 2.15. The leftmost BFS exploration tree of an accessibly ori-
ented rooted map M is a tree that visits all vertices.

Proof. It has no cycles because every vertex is visited only once and every
vertex is visited because the orientation is accessible.

The following fact can be easily deduced from Algorithm 1.

Proposition 2.16. In an accessibly oriented map M , if every vertex is la-
belled with the length of the shortest path from the root to it, the leftmost
BFS exploration tree T of M can be characterized as the unique spanning
tree of M satisfying that

(i) labels increase by 1 along edges (i.e., T is a BFS tree),

(ii) if e is an edge in M \ T going from a vertex u to a vertex v such that
the label of v is one unit larger than the label of u, then none of the
following conditions hold:

a) u precedes the parent of v in the lexicographical order of T (Figure
2.3a),

b) u is the parent of v and the edge connecting u and v in T is found
after e when turning clockwise around v starting from the edge
connecting v to its parent (or starting from the root corner in the
case that v is the root vertex) (Figure 2.3b).
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If T were a BFS exploration tree of M but it were not leftmost, then there
would be some edge breaking condition (ii). We say that these edges are bad.

u

e

v

(a)

u

e

v

(b)

Figure 2.3: The two types of bad edge.
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Chapter 3

Constellations

Definition 3.1. Let m ≥ 2. We say that a map whose faces are bicolored
(black and white) is an m-constellation if

(i) adjacent faces have different colors,

(ii) black faces have degree m and white faces have degree mi for some
integer i ≥ 1 (which can be different among white faces),

(iii) vertices can be labeled with integers in {1, 2, . . . ,m} in such a way that
turning clockwise around any black face the labels read 1, 2, . . . ,m.

Definition 3.2. A rooted constellation (Figure 3.1) is a constellation that is
rooted on a white corner. The first edge found when turning counterclockwise
around the root vertex starting from the root corner is called the root edge.
Note that the root corner can be recovered from the root edge, so it is
equivalent to root a constellation on a white corner or on an edge.
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Figure 3.1: A rooted 3-constellation of genus 1. The root is pointed by the
double arrow.

Definition 3.3. The dual of an m-constellation is called an m-Eulerian map
(Figures 3.2 and 3.3). m-Eulerian maps can be rooted on a corner, in the
same way as constellations. Their root edge is defined as the first edge found
when turning clockwise around the root vertex, starting at the root corner.

The dual of a rooted m-constellation (resp. rooted m-Eulerian map) is
a rooted m-Eulerian map (resp. rooted m-constellation) with the “same”
root. In other words, the root vertex, the root face and the root edge be-
come, respectively, the root face, the root vertex and the root edge through
dualization.
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Figure 3.2: A rooted 3-Eulerian map of genus 1. The root corner is pointed
by the double arrow.
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Figure 3.3: A rooted 3-constellation of genus 1 (blue) with its dual rooted
3-Eulerian map (black). Their roots are pointed by the double arrows.

If we only require conditions (i) and (ii) in Definition 3.1, we obtain the
definition of an m-hypermap. The following is a classical result.

Proposition 3.4. Planar m-hypermaps are planar m-constellations.

Proof. Let G be a planar m-hypermap and let us orient its edges by making
them turn clockwise around black faces. In order to prove the statement it
suffices to show that the lengh of any oriented simple cycle is a multiple of
m, since then we can fix the label of any vertex and the other labels are
deduced without contradicting condition (iii) in Definition 3.1.

Let us consider a oriented simple cycle of G. Since G is planar, this cycle
separates the sphere into two contractible connected components. In one of
these connected components, all the faces adjacent to the cycle are black.
Since every edge belongs to a black and a white face, the length of the cycle
is equal to the sum of the degrees of black faces minus the sum of the degrees

17



of the white faces in this component. This total is a multiple of m because
all faces have a degree multiple of m.

Definition 3.5. Consider a rooted m-constellation. The canonical orienta-
tion of its edges is the orientation for which its edges turn clockwise around
black faces. When endowed with this canonical orientation, the canonical
labelling (Figure 3.4) of its vertices is obtained by labelling every vertex with
the length of the shortest oriented path to it from the root vertex.

This orientation and labelling was introduced by Bouttier, Di Francesco
and Guitter in [4] for planar constellations to define what is now known as
the BGD bijection.

0

1

2

1

21

2

3

1

2

Figure 3.4: A rooted 3-constellation of genus 1 endowed with its canonical
orientation and labelling. The root is pointed by the double arrow.

Proposition 3.6. The canonical orientation of a rooted m-constellation is
accessible and, thus, its canonical labelling is well defined.

18



Proof. Consider any (non oriented) path on the map. Every backwards edge
along the path can be replaced by the complementary edges on its black face
so that the resulting path is oriented.

The canonical labelling of the faces of an m-Eulerian map is the canonical
labelling of the vertices of its dual constellation.

Proposition 3.7. In a rooted m-constellation endowed with its canonical
labelling, when turning clockwise around black faces, the labels read i, i +
1, . . . , i+m− 1, for some i ≥ 0.

Proof. Condition (iii) in Definition 3.1 implies that, if l1 and l2 are the
canonical labels of two vertices v1 and v2 joined by an edge oriented towards
v2, then l1 + 1 ≡ l2 (mod m). Therefore, if the smallest canonical label in
a black face is i, the remaining ones are, at least, i+ 1, i+ 2, . . . , i+m− 1
when read clockwise. But these values are attained by following the edges
around the face and the result follows.
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Chapter 4

Blossoming unicellular maps

Blossoming bijections were introduced by Schaeffer in [9] to put some classes
of maps in bijection with decorated trees. These bijections consist in selecting
a canonical spanning tree (or, more generally, a canonical spanning submap)
and cut into two half-edges the edges not belonging to it. The resulting map
is said to be a blossoming map, which can be closed back into the original
map. The following definition is similar to the one given by Lepoutre in [8],
but not identical.

Definition 4.1. A blossoming map is a map with stems (that can be viewed
as half-edges) attached to its vertices. There are two types of stems: out-
stems, which are outgoing stems, and instems, which are ingoing stems.

Stems separate corners as if they were edges, which means that they
count towards the (total) degree of their vertex. We will use the term inner
degree when we want to ignore stems, i.e., when we only count the number
of incident edges to a vertex (loops are counted twice). Stems also have a
right and left side, defined in the same way as we did for edges.

Definition 4.2. A rooted blossoming map is a blossoming map with a
marked instem, which is called the root (instem). The vertex to which the
root is attached is called the root vertex and the face incident to the root
is called the root face. The corner on the right side of the root is called the
root corner.

From now on we focus on blossoming maps that are unicellular. The two
following definitions also have similar counterparts in [8].

Definition 4.3. The contour order of the corners or stems of a rooted uni-
cellular blossoming map is the order determined by the counterclockwise
tour around its unique face, starting at the root corner. More specifically,
we say that corner (or stem) k1 precedes corner (or stem) k2 in contour order
(k1 ≺ k2) if k1 is encountered before k2 in this tour.
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Observe that the root corner and the root instem are, respectively, the
first corner and the first stem in contour order.

Definition 4.4. The good orientation of a unicellular blossoming map is the
orientation for which every edge is, first, followed backwards and, then, for-
wards in a tour around the unique face starting at the root corner. Note that
it does not matter whether the face is followed clockwise or counterclockwise.

Observe that in the good orientation of a rooted unicellular blossoming
map of genus 0 (which is a tree), edges are oriented from a child to its parent.

Definition 4.5. Given a rooted unicellular blossoming map which has m
more instems than outstems, we can label its corners in the following way.

We make a counterclockwise tour around its unique face starting at the
first corner after the root corner. Along this tour, we will visit every corner
once and we will label it with the value of a counter that starts at m − 1,
increases by 1 every time we encounter an outstem and decreases by 1 every
time we encounter an instem. The result of this procedure is called the good
labelling of the unicellular blossoming map.

When endowed with its good orientation, the edges of the map have a
right and a left side. Stems have one label on their left and one on their
right. Edges have two labels on either of their sides, and along each side,
both labels are equal. Hence, it makes sense to speak about the left and
the right label of an edge. We say that an edge or stem increases (resp.
decreases) by d if the value of its left label minus the value of its right label
is d (resp. −d).

Observe that, since there are m more instems than outstems, the last
corner to label, which is the root corner, has good label 0. Also note that all
stems decrease by 1 except for the root instem, which increases by m− 1.

It is clear that the good labelling satisfies that, for any vertex, the total
increment of the ingoing edges and stems is equal to the total increment of
the outgoing ones.
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Chapter 5

m-bipartite unicellular maps

Definition 5.1. Let m ≥ 2. We say that a rooted blossoming plane tree
whose vertices are bicolored (black and white) is m-bipartite (Figure 5.1) if

(i) neighbouring vertices have different colors, instems are attached to
white vertices and outstems are attached to black vertices,

(ii) black vertices have total degree m,

(iii) white vertices have total degree mi for some integer i ≥ 1 (which can
be different among white vertices),

(iv) black vertices have inner degree 1 or 2,

(v) white vertices of degree mi have exactly i−1 neighbours of inner degree
1.
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Figure 5.1: A 3-bipartite tree endowed with its good orientation and good
labelling. Its root instem is marked with a double arrow.

These objects are defined in [3] by Bousquet-Mélou and Schaeffer with
a slightly different terminology. In their article, they name these objects
m-Eulerian trees, and they construct a bijection between them and planar
constellations. In the next definition, we give a generalization of m-bipartite
trees to higher genus (m-bipartite unicellular maps) that we will show to be
in bijection with constellations of higher genus. The change of nomenclature
is made to avoid name collisions between our objects and the m-Eulerian
maps defined in Chapter 3.

Definition 5.2. Let m ≥ 2. We say that a rooted unicellular blossoming
map with m more instems than outstems and whose vertices are bicolored
(black and white) is an m-bipartite unicellular map (Figure 5.2) if

(i) neighbouring vertices have different colors, instems are attached to
white vertices and outstems are attached to black vertices,

(ii) black vertices have degree m,

(iii) white vertices have degree mi for some integer i ≥ 1 (which can be
different among white vertices),

and, when endowed with its good labelling,

(iv) the edges whose origin is a black vertex either decrease by 1 or increase
by m− 1,
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(v) the edges whose origin is a white vertex decrease by m− 1.
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Figure 5.2: A rooted 3-bipartite unicellular map of genus 1 with its good
orientation and good labelling. The root is marked with a double arrow.

Proposition 5.3. In m-bipartite unicellular maps, when turning clockwise
around black vertices, their good labels read i, i+ 1, . . . , i+m− 1.

Proof. From Definition 5.2 we can see that, if label l1 is followed by label l2
in clockwise order around a black vertex, either l2 = l1+1 or l2 = l1−m+1.
Thus, there has to be exactly one jump of m− 1 and the result follows.

Proposition 5.4. m-bipartite unicellular maps of genus 0 are m-bipartite
trees and vice-versa.

Proof. Suppose that U is an m-bipartite unicellular map of genus 0. Endow
it with its good orientation. We have to prove that (iv) and (v) in Definition
5.1 hold.
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Consider a black vertex. If its inner degree is k, it has k − 1 white
children and m − k outstems. Since the edges oriented from white to black
decrease by m− 1 (condition (v) in Definition 5.2), the single outgoing edge
increases by d = − (k − 1) (m− 1) + (m− k) = 2m − km − 1. Taking into
account condition (iv) in Definition 5.2, the only possible values of k are 1
(in which case d = m − 1) or 2 (in which case d = −1), because if k ≥ 3,
then d ≤ −m− 1. Thus, condition (iv) in Definition 5.1 is satisfied. Figure
5.3 displays the three cases.

i

i+ 1

i+ 2

(a) Case k = 1.

i

i− 2

i− 1

(b) Case k = 2.

i

i− 2

i− 4

(c) Case k > 2.

Figure 5.3: The three cases for a black vertex when m = 3.

Now, consider a white vertex of degree mi (Figure 5.4). We know that
its single outgoing edge decreases by m − 1, that its instems decrease by 1
and that every ingoing edge either increases by m−1 or decreases by 1. This
can only happen if exactly i − 1 of its ingoing edges increase by m − 1. As
we have just seen, an edge oriented from black to white increases by m− 1
if and only if the black vertex has inner degree 1. Thus, condition (v) in
Definition 5.1 is also satisfied.
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i

i− 1i− 2i− 3i− 1

i− 2

i

i− 2i− 1i− 2

Figure 5.4: The situation of a white vertex of degree 6 (m = 3, i = 2).

Conversely, suppose that T is an m-bipartite tree. Conditions (iv) and
(v) in Definition 5.2 have to be proven. T is a unicellular map of genus 0, so
we can endow it with its good labelling. We will proceed by induction, from
the leaves upwards.

Consider a black vertex. If its inner degree is 1, it has m − 1 outstems,
so its outgoing edge increases by m− 1. If its inner degree is 2, it has m− 2
outstems and one ingoing edge that decreases by m − 1 (by the hypothesis
of induction). Therefore, its outgoing edge decreases by 1. Condition (iv) in
Definition 5.2 is thus satisfied for this vertex.

Now, consider a white vertex of degree mi. By definition, i − 1 of its
children have inner degree 1 and increase by m − 1 by the hypothesis of
induction. Its remaining children have inner degree 2 and decrease by 1 by
the hypothesis of induction. Its instems also decrease by 1. Therefore, its
outgoing edge decreases by (m− 1) i−(i− 1) (m− 1) = m−1 and condition
(v) in Definition 5.2 is satisfied for this vertex.

Definition 5.5. Given an m-bipartite unicellular blossoming map, consider
the cyclic word formed by its stems in their contour order. Outstems are
represented by the letter o and instems are represented by the letter i. Now
we match letters o and i as if they were opening and closing parentheses,
respectively. First, every letter o immediately followed by a letter i is matched
with it. Then, all matched letters are removed and this procedure is repeated
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until no more matchings are possible. Since there are exactly m more instems
than outstems, m instems remain unmatched. We call these instems single.

Note that the matching described is the only possible one, since, in a
correct parenthesis word, an opening parentheses next to a closing one always
have to be matched and can be ignored from that point on.

Definition 5.6. An m-bipartite unicellular map is well-rooted if its root
instem is single (Figure 5.5). Equivalently, this means that, if o and i are
matched, then o ≺lex i.

This notion of well-rootedness is the same as in [8], and it is analogous
to the notion of balance described in [3] for the planar case.

Figure 5.5: A well-rooted 3-bipartite unicellular map of genus 1 with its
matching (dashed lines). The root is marked with a double arrow.

Proposition 5.7. An m-bipartite unicellular map U is well-rooted if and
only if its good labels are non negative.
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Proof. Suppose that U is well-rooted. In order for a corner k to have a
negative label, there must be, at least, m single non-root instems between
the root corner and k. But this is impossible because there are only m − 1
single instems apart from the root instem.

Conversely, suppose that U is not well-rooted. Then, the root instem is
matched with some outstem b. Since the label of the root corner is 0, the
labels around b are −1 and 0.
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Chapter 6

The bijection between
m-constellations and
m-bipartite unicellular maps

This chapter is dedicated to proving our main result:

Theorem 6.1. Rooted m-constellations of genus g with di white faces of
degree mi are in bijection with well-rooted m-bipartite unicellular maps of
genus g with di white vertices of degree mi.

6.1 The closure Φ

In this section we describe how a well-rooted m-bipartite unicellular map
can be closed to obtain an m-Eulerian map.

Definition 6.2. Let U be a well-rooted m-bipartite unicellular map. Let r
be its root vertex. We define the closure Φ (U) of U in the following way.

First, place a black vertex s with m outstems attached to it in the unique
face and connect one of the outstems to the root instem. The new edge is
oriented towards r. This intermediate map will be called O. The good
labelling of the corners of U can be extended to include the newly created
corners. This yields a labelling for which all stems decrease by 1.

Now, every pair of matched stems b, l is connected to form a complete
edge. The fact that the matched stems of U form a valid parentheses word
ensures that these new edges can be drawn without intersections. Moreover,
since U was well-rooted, s has not been enclosed by any of these edges.

After this, there are m−1 unmatched instems (the original single instems
except for the root instem, which no longer exists) and m − 1 unmatched
outstems (the ones attached to s). We match them in the only possible way
and connect them to form complete edges as we did for the rest. It is clear
that this can also be done without intersections, so the final result, Φ (U),
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is a map. In fact, the following lemma shows that it is an m-Eulerian map.
We choose to root it on the same corner as U or, equivalently, on the edge
joining r and s.

The closure procedure is illustrated in Figure 6.1.
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Figure 6.1: The closure of a well-rooted 3-bipartite unicellular map.

Lemma 6.3. The closure Φ (U) of a well-rooted m-bipartite unicellular map
U of genus g with di white vertices of degree mi is a rooted m-Eulerian map
of genus g with di white vertices of degree mi. Moreover, the good labelling of
the corners of U corresponds to the canonical labelling of the faces of Φ (U).

Proof. It is clear that the white vertices in Φ (U) correspond to the white
vertices in U and that their degrees are preserved. The black vertices in
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Φ (U) correspond to either the black vertices in U or to s, and all of them
have degree m. It is also clear that neighbouring vertices in Φ (U) have
different colors. The genus of the map is preserved because all we do is
divide a contractible face into multiple faces.

In U , the good labels of two corners adjacent along an edge coincide and
this still holds after connecting two matched stems. Hence, in any face of
Φ (U), all corners have the same good label. Proposition 5.3 implies that
(the dual of) condition (iii) in Definition 3.1 holds. We conclude that Φ (U)
is a rooted m-Eulerian map.

We now prove the second part of the lemma. Let f be a face of Φ (U).
We claim that the canonical label of f in Φ (U) is larger or equal to the label
of f induced by the good labelling of U . Consider any copath in Φ (U) from
the root face to f that only crosses edges in clockwise sense around black
vertices. If the faces of Φ (U) have the induced good labelling, then, after
crossing an edge, we either increase the label by 1 or decrease it by m − 1.
Thus, the canonical label of f is at least as large as its good label.

Let k be a corner of f in U . We now claim that the canonical label of
f in Φ (U) is not greater than the good label of k in U . Consider in O a
path that follows the face counterclockwise from the root corner of U to k
(Figure 6.2a) and imagine this path drawn on Φ (U) (Figure 6.2b). Along
this path in O, we may encounter some outstems and instems. Since U is
well-rooted, it is clear the we will encounter at least as many outstems as
instems. In particular, the instems we encounter are matched with previous
outstems along the path. Crossing an outstem and, then, its matched instem
corresponds to entering and exiting a face of Φ (U) through the same edge.
Therefore, the path drawn on Φ (U) can be modified not to enter the faces
that we would exit afterwards (Figure 6.2c). The resulting path crosses as
many edges in Φ (U) as the difference between crossed outstems and instems
in U . These edges are crossed clockwise around their black vertex, so the
claim follows.
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(a) (b)

(c)

Figure 6.2

6.2 The opening Ψ

In the previous section we obtained a rooted m-Eulerian map starting from
a well-rooted m-bipartite unicellular map by adding a black vertex with m
outstems and connecting pairs of stems. Here, we would like to do the inverse
transformation, that is, starting from a rooted m-Eulerian map, cut some of
its edges into stems so that the result is a well-rooted m-bipartite unicellular
map and a disconnected black vertex with m outstems.

Definition 6.4. Let M be a rooted m-Eulerian map. We define its opening
Ψ(M) in the following way. First, consider the dual map C of M , which
is a rooted m-constellation. Endow C with its canonical orientation and
labelling and take its leftmost BFS exploration tree, T . For every edge of M
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whose dual belongs to T , cut it into two stems: an instem attached to the
white vertex and an outstem attached to the black one.

Observe that the dual of the root edge of M is oriented towards the
root vertex of C. This implies that its origin has label m − 1 and that
its destination has label 0. Therefore, after this procedure, the root edge
remains uncut and, as we prove in the following lemma, it joins the root
vertex and a black vertex s with m − 1 outstems attached to it. The last
step is to cut the root edge and remove s.

We root the result of this, Ψ(M), at the instem created when cutting
the root edge.
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Figure 6.3: The opening of a rooted 3-Eulerian map.
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Lemma 6.5. The opening Ψ(M) of a rooted m-Eulerian map M of genus
g with di white vertices of degree mi is a well-rooted m-bipartite unicellular
map of genus g with di white vertices of degree mi. Moreover, the canonical
labelling of M corresponds to the good labelling of Ψ(M) and

Φ (Ψ (M)) = M.

Proof. Let T be the leftmost BFS exploration tree of C = M∗ endowed with
its canonical orientation. We call O the result of opening M through T , that
is, cutting every edge of M whose dual belongs to T into two stems. We
claim that O is a unicellular map. Indeed, it has a single face because T is
connected and visits all vertices, and this face is contractible because T is a
tree.

From now on, let r be the root vertex of M and let s be the vertex
connected to the root through the root edge. As T is a leftmost BFS tree,
it cuts all edges incident to s in M except for the root edge. Thus, in
O, s is only incident to the root edge and we can cut it to obtain Ψ(M)
and a disconnected black vertex with m outstems. Ψ(M) is a unicellular
blossoming map rooted on the instem created when cutting the rood edge of
M . We now show that it is m-bipartite.

The canonical labelling of vertices in C gives a canonical labelling of
faces in M . We can label every corner of Ψ(M) with the label of its face in
M . We claim that this labelling coincides with the good labelling of Ψ(M).
Indeed, every edge in T goes from a vertex with label i to a vertex with label
i + 1 and has a black face on its right side. Thus, its dual in M has a face
with label i on its left side and a face with label i+ 1 on its right side when
oriented towards its black end. This is why all stems different from the root
decrease by 1. Moreover, the root corner of Ψ(M) was the root corner of M
and, thus, has label 0.

We now claim that Ψ(M) satisfies conditions (iv) and (v) in Definition
5.2. Indeed, (iv) holds due to Proposition 3.7 and Lemma 6.6 ensures that
(v) holds too.

Ψ(M) has genus g because it is unicellular on the same surface as M , the
degrees of white vertices are preserved, two adjacent vertices have different
colors and outstems are attached to black vertices, while instems are attached
to white ones. Therefore, Ψ(M) is an m-bipartite unicellular map of genus g
with di white vertices of degree mi. Moreover, since the canonical labelling of
C is non negative, it follows from Proposition 5.7 that Ψ(M) is well-rooted.

Finally, the fact that the stems of Ψ(M) have only one possible matching,
which must correspond to the edges in M from which they were created,
implies that Φ (Ψ (M)) = M .

Lemma 6.6. Let M be a rooted m-Eulerian map, let M∗ be its dual m-
constellation endowed with its canonical orientation and canonical labelling,
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let T be any BFS exploration tree of M∗ and let O be the unicellular blos-
soming map obtained by cutting the edges of M whose dual belongs to T .
We root O in the same corner as M and endow it with its good orientation.
Then, T is the leftmost BFS exploration tree of M∗ if, and only if O has no
edges that increase by 1.

Proof. Suppose that there is an edge e∗ in O that increases by 1. Let fl and
fr be the faces on the left and right side of e∗ in M , respectively. Since e∗

has a good orientation, a counterclockwise tour around the face of O starting
from its root corner visits, first, the right side of e∗ and, then, its left side.
Let Q be the section of this counterclockwise tour that ends in the right
side of e∗. Let Pl and Pr be the paths from the root of T to f∗

l and f∗
r ,

respectively. Pr and Q form a “closed region”, the interior of which we define
to be on the right side of e∗ (Figure 6.4). Since fl is outside this region, Pl

cannot go inside of it. If it did, it would have to cross Q to get out of it,
but this is impossible because the duals of the edges of O do not belong to
T . Since the length of Pl is one unit larger than the one of Pr, there are two
possibilities:

a) Either Pl deviates to the right of Pr at some point (Figure 6.4a), or

b) Pl is the result of appending an extra edge to the end of Pr (Figure
6.4b).

f ∗

r

f ∗

l

e

(a)

f ∗

r

f ∗

l

e

(b)

Figure 6.4: In dashed, e; in red, Q; in orange, Pr; in purple, Pl; in blue, the
rest of T . The shaded area is the “closed region”.

In both cases, e is a bad edge and we conclude, by proposition 2.16, that
T is not the leftmost BFS tree.
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Conversely, suppose that T is not the leftmost BFS exploration tree of
M∗. From Proposition 2.16, we know that there exists a bad edge e going
from a vertex u to a vertex v. Let Q be the section of the counterclockwise
tour around the unique face of O that ends in the side of e∗ that belongs to
u∗. Let Pu and Pv be the paths from the root of T to u and v, respectively.
By the same argument as before, Pu and Q form a “closed region” in which
Pv cannot enter. Therefore, the tour around the unique face of O visits, first,
the side of e∗ that belongs to u∗ and, then, the side that belongs to v∗. We
conclude e∗ is an edge oriented from white to black that increases by 1.

6.3 The complete bijection

So far we have shown that the closure of a well-rooted m-bipartite unicellular
map is a rooted m-Eulerian map and that the opening of a rooted m-Eulerian
map is a well-rooted m-bipartite unicellular map whose closure is the original
map. To show that Φ and Ψ are inverse operations and, thus, to prove that
well-rooted m-bipartite unicellular maps and rooted m-Eulerian maps are in
bijection, we just need the following lemma.

Lemma 6.7. Let U be a well-rooted m-bipartite unicellular map. Then,

Ψ(Φ (U)) = U.

Proof. Let M = Φ(U), let C = M∗ and let T be the tree formed by the
edges of M that are not in U . Endow C with its canonical labelling and its
canonical orientation. Lemma 6.3 tells us that the canonical labelling of M
corresponds to the good labelling of U . Therefore, T is a BFS exploration
tree of C. To prove that Ψ(M) = U , we need to show that it is the leftmost
BFS tree. By definition, U has no edges that increase by 1, so the result
follows from Lemma 6.6.

We can finally assemble our theorem.

Proof of Theorem 6.1. Lemmas 6.3, 6.5 and 6.7 prove the bijection between
rooted m-Eulerian maps of genus g with di white vertices of degree mi and
well-rooted m-bipartite unicellular maps of genus g with di white vertices of
degree mi. The duality relation between rooted m-constellations and rooted
m-Eulerian maps concludes the proof.

Remark 6.1. As shown in Proposition 5.4, the m-Eulerian trees described
in [3] by Bousquet-Mélou and Schaeffer are the planar instances of the m-
bipartite unicellular trees we have introduced here. We use the same clos-
ing operation as they do, but flipping the orientation of the surface, which
amounts to swapping the notions of left-right and clockwise-counterclockwise.
Thus, when we restrict our bijection to the sphere, we recover their bijection.
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Remark 6.2. In [8], Lepoutre gives a bijection between bicolorable maps
of arbitrary genus and an adequate family of blossoming unicellular maps.
It is easy to convince oneself that bicolorable maps are, in fact, 2-Eulerian
maps whose black vertices have been replaced by a single edge connecting
their two white neighbours (Figure 6.5). In his bijection, Lepoutre opens
bicolorable maps in the following way1. First, he takes the dual of the bi-
colorable map, which is a bipartite map, and endows it with its geodesic
orientation. Then, he considers the leftmost BFS exploration tree of this
oriented bipartite map and, finally, he cuts all the edges of the bicolorable
map whose dual does not belong to the tree. This is essentially the same
way in which we open 2-Eulerian maps: the difference between our canoni-
cal orientation of 2-constellations (we orient vertices clockwise around black
faces) and Lepoutre’s geodesic orientation of the bipartite map is explained
by the fact that he has collapsed the black faces of the 2-constellation into
edges to obtain the bipartite map. Therefore, we can say that our bijection
also generalizes the one given by Lepoutre in [8].

(a) A planar Eulerian map. (b) A planar 2-Eulerian map.

(c) The dual map of 6.5a.
(d) The dual map of 6.5b: a planar 2-
constellation.

Figure 6.5: The relation between bicolorable maps and 2-Eulerian maps.

1In his article, the opening is actually defined in a different way, but he shows that
ultimately they are the same operation.
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Chapter 7

Rerooting an m-bipartite
unicellular map

After Theorem 6.1 has been established, one can try to enumerate rooted con-
stellations by enumerating well-rooted m-bipartite unicellular maps, which
will hopefully be easier to study.

The first problem we run into when trying to count well-rooted m-
bipartite unicellular maps is precisely the fact that they are well-rooted.
As Lepoutre explains in [8], well-rootedness is a global notion, since it re-
quires the positivity of all the good labels of a map. This complicates the
task of counting these objects and, thus, we would like to get rid of it. In
order to do so, we use the technique of rerooting first introduced in [9] and
which was successfully used in [3] and [8]. Specifically, we provide an algo-
rithm to reroot a well-rooted map on any instem, which will later yield an
enumerative relation between m-bipartite unicellular maps and well-rooted
m-bipartite unicellular maps. Lemma 7.3 and Proposition 7.2 have analo-
gous counterparts in [8].

Definition 7.1. Let U be a well-rooted m-bipartite unicellular map, let r
be its root and let t be a distinguished instem of U . We endow U with its
good orientation and its good labelling.

The rerooting algorithm is defined as follows (Figure 7.1). If t = r, we
do nothing. Otherwise, we first join r and t to create an edge. This divides
the single face of U into faces fL and fR, where fL is the one containing
the root corner of U . We then add m to all labels of fL and we reverse the
orientation of all the edges that separate fL and fR. Finally, we cut the edge
joining r and t back into two instems and we swap the roles of r and t: t
becomes the root and r becomes the distinguished instem.
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Figure 7.1: The rerooting algorithm of a 3-regular bipartite unicellular map.
U on the left and U ′ on the right.

We will use this rerooting procedure to prove the following result.

Proposition 7.2. m-bipartite unicellular maps with a distinguished single
instem are in bijection with well-rooted m-bipartite unicellular maps with a
distinguished instem.

Lemma 7.3. Let U be a well-rooted m-bipartite unicellular map, let t be an
instem of U different from the root r and let U ′ be the result of rerooting U
on t. Consider the faces f1 and f2 obtained after joining r and t to create
an edge. The good orientation of an edge e is different in U and U ′ if, and
only if, e separates faces f1 and f2.

Proof. The good orientation of an edge e is determined by the order in which
a clockwise tour around the unique face visits its sides. Observe that one
such tour starting at r visits, first, all the sides of edges belonging to f1
(WLOG) and, then, all the sides of edges belonging to f2. If we start the
tour at t, it visits, first, all the sides of edges belonging to f2 (but in the
same order!) and, then, all the sides of edges belonging to f1 (in the same
order as well).

We now distinguish two cases:

• If both sides of e belong to the same face, then they are visited in the
same order in both U and U ′.

• If the sides of e do not belong to the same face, then they are visited
in the opposite order in U and U ′.
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Lemma 7.4. Let U be a well-rooted m-bipartite unicellular map endowed
with its good orientation. An edge e oriented from black to white increases
by m− 1 if, and only if the black vertex has m− 1 outstems.

Proof. If the black vertex has m− 1 outstems, the edge clearly increases by
m − 1. Conversely, if the black vertex has at most m − 2 outstems, then
it has at least two incident edges. Among these edges, the one travelled to
leave the vertex after the first time it is visited in the tour around the unique
face is an ingoing edge. Therefore, it decreases by m− 1 and the remaining
edges (including e) must decrease by 1.

Proof of Proposition 7.2. Let U be a well-rooted m-bipartite unicellular map,
let t be an instem of U different from the root r and let U ′ be the result
of rerooting U on t. We claim that U ′ is an m-bipartite unicellular map
with a distinguished single instem, endowed with its good orientation and
its (possibly translated1) good labelling.

The orientation of U ′ is good by Lemma 7.3. Around stems, either both
labels have increased or remained unchanged, except for r, which now de-
creases by 1, and t, which now increases by m−1. The only edges for which a
single side has changed its label are the ones separating faces fL and fR. Let
e be any such edge and let us study two cases depending on its orientation.

• If, in U , e was oriented from white to black, it decreased by m− 1 by
definition. We also know that its left side belonged to fL. Therefore,
in U ′, e is oriented from black to white and decreases by 1.

• If, in U , e was oriented from black to white, we claim that it decreased
by 1. Indeed, in U there are no black vertices that belong to both faces
fL and fR with m− 1 outstems, and by Lemma 7.4 the claim follows.
We also know that its left side belonged to fL. Therefore, in U ′, e is
oriented from white to black and decreases by m− 1.

We conclude that the labelling is the (possibly translated) good labelling.
Finally, r is single because U was well-rooted.

1By this we mean that all labels differ from the good ones by a fixed amount.
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Chapter 8

Enumeration of bipartite
3-face-colorable cubic maps on
the torus

In this chapter, we focus our study on bipartite 3-face-colorable cubic maps
of genus 1, which are 3-Eulerian maps of genus 1 whose white vertices all
have degree 3. This is a very particular case compared to the general m-
constellations of arbitrary genus for which we have built a bijection, but it
allows for relatively simple calculations that can be done by hand.

8.1 m-Eulerian m-regular maps

Before fixing m = 3, let us study rooted m-Eulerian m-regular maps of ar-
bitrary genus whose white vertices have the smallest possible degree. These
maps can be equivalently described as rooted bipartite m-regular maps whose
faces can be labelled with integers in {1, 2, . . . ,m} in such a way that, when
turning clockwise around any black vertex, the labels of the faces read
1, 2, . . . ,m. In the case m = 3, this last condition can be formulated by
saying that the map is 3-face-colorable.

The image of this family of maps through the opening algorithm is the
family of well-rooted m-bipartite unicellular map of arbitrary genus whose
white vertices have degree m. Consider one of these maps and endow it with
its good orientation and good labelling. It is clear that every vertex has,
at least, one edge departing from it, the edge travelled to visit it for the
first time in the face tour. In particular, white vertices have, at least, one
such edge. But all edges departing from a white vertex decrease by m − 1,
which implies that their remaining m− 1 edges are oriented towards it and
decrease by 1. This means, in fact, that all edges oriented from black to
white decrease by 1. Therefore, taking into account the stems, all black
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vertices have outdegree m− 1 and indegree 1 1, while all white vertices have
outdegree 1 and indegree m − 1, except for the (white) root vertex, which
has indegree m because the root instem increases by m− 1.

When this map is closed, we recover our rooted m-Eulerian m-regular
map. Every edge in the closed map inherits an orientation from the unicel-
lular map, either its good orientation if already existed or the orientation of
the stems that were united to create it in the other case. All white vertices
have outdegree 1 and all black vertices have indegree 1 except for the (white)
root vertex, which has outdegree 0, and the black star that was added during
the closing algorithm, which has indegree 0. If we swap the edge between the
two, which is the edge created from the root instem in the unicellular map,
we obtain an α-orientation of the map: all white vertices have outdegree 1
and all black vertices have indegree 1.

8.2 Opening and rerooting

From here on, we fix m = 3 and we restrict ourselves to the torus.
Let C be the class of rooted bipartite 3-face-colorable cubic maps of genus

1 and let O be the class of well-rooted 3-bipartite unicellular maps of genus
1 whose white vertices have degree 3 . The maps in C are counted by their
number of white vertices and the maps in O are counted by their number of
instems.

Lemma 8.1. The number of instems of a map o ∈ O is equal to the number
of white vertices of its closure c ∈ C.

Proof. Let v, e and f be the number of vertices, edges and faces of c, respec-
tively. By Euler’s formula, we know that

v − e+ f = 2− 2g = 0.

Since c is a cubic map, e = 3
2v. By substitution we get that

f =
3

2
v − v =

1

2
v.

As c is also bipartite, it has as many white vertices as black ones. Therefore,
it also has as many white vertices as faces.

When closing o, a new face will be created for each of its instems different
from the root instem. The result follows.

An immediate consequence of this is that C and O have the same gener-
ating functions: C (z) = O (z).

1By outdegree (resp. indegree) we mean the number of outgoing (resp. ingoing) stems
and edges connected to a vertex
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Let U be the class of 3-bipartite unicellular maps of genus 1 whose white
vertices have degree 3 counted by their number of instems different from the
root. The rerooting procedure between O and U yields the following result.

Lemma 8.2. The generating functions of O and U satisfy the relation

O (t) = 3

∫ t

0
U (z) dz.

Proof. This is direct from 7.2.

8.3 The pruned maps and their enumeration

We follow the framework introduced by Chapuy, Marcus and Schaeffer in [6]
to study unicellular maps.

Definition 8.3. The extended scheme of a map u ∈ U is the map obtained
by, first, removing all its stems and, then, iteratively removing all its vertices
of degree 1.

This procedure only removes stems and treelike parts from the map, so
an extended map is also a unicellular map. In fact, any map u ∈ U can be
decomposed into an extended scheme and some attached stems and treelike
parts.

An extended scheme can only have vertices of degree 2, which we call
branch vertices, and vertices of degree 3, which we call scheme vertices. The
branch vertex to which the root or the treelike part containing the root is
attached is called root branch vertex. Let v2 and v3 be the number of branch
vertices and scheme vertices of any extended scheme, respectively. Euler’s
formula yields

v2 + v3 − e+ f = 2− 2g

v2 + v3 −
1

2
(2v2 + 3v3) + 1 = 0

v3 = 2.

Therefore, these extended schemes are formed by two scheme vertices be-
tween which there are three branches that can contain many branch vertices.
The treelike parts can only be attached to white branch vertices. Indeed, in
the original map u endowed with its good orientation, a vertex with an at-
tached tree always has indegree 2, regardless of whether the tree contains the
root or not. Moreover, if we keep the good orientation of u on its extended
scheme, all branch vertices must have indegree and outdegree 1 except for
the root branch vertex, which has indegree 2 and outdegree 0. Since the sum
of indegrees and the sum of outdegrees of the map are equal, the two scheme
vertices have to be black.
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Let T be the class of these attachable treelike parts, counted by their
number of instems. For the sake of simplicity, we will consider that a single
instem is a treelike part and belongs to T .

Lemma 8.4. The generating function of T satisfies the following recursive
relation:

T (z) = z + 2T (z)2 .

Proof. Since a map u ∈ U can be rerooted and this only changes its good
orientation and good labels, we can assume without loss of generality that
the treelike parts do not contain the root. The following diagram illustrates
the three possibilities that produce the recurrence relation.

T T T T

i i+ 1 i ii+ 1 i+ 1

i

i+ 1

i+ 1

i

i− 1
i

i

i+ 1

i+ 2

i+ 2

i+ 1

i− 1

Figure 8.1: Structure of a treelike part.

The treelike part either is an instem or has a black vertex with an outstem
attached to it (two possibilities) followed by a white vertex with two treelike
parts attached to it.

Definition 8.5. Let u ∈ U be a 3-bipartite unicellular map whose white
vertices have degree 3. Its pruned map p is obtained by replacing all its
treelike parts by stems. The treelike part containing the root is replaced by
a root stem. Let P be the class obtained by pruning every map in U . The
pruned maps of P are counted by their number of instems different from the
root.

Observe that, if we keep the good labels on the pruned map, the rules of
the labelling still aply. In other words, P ⊂ U .

Lemma 8.6. The generating functions of U , P and T satisfy the relation

U (z) =
∂T

∂z
P (T (z)) .
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Proof. To recover a map u ∈ U from its pruned map p ∈ P, two steps are
needed. First, we replace all instems by treelike parts, obtaining the factor
P (T (z)). Then, an additional treelike part is attached to the root stem and
one of its instems is selected to be the root. This gives the factor ∂T

∂z .

We would now like to enumerate P.

Definition 8.7. The labelled scheme of a pruned map p ∈ P is obtained by
removing all its branch vertices except for the root branch vertex. The good
labels of the remaining corners are kept.

It is clear that labelled schemes are uniquely determined by the lowest
label on each of its scheme vertices (Figure 8.2). There is, thus, a correspon-
dance between labelled schemes and pairs (i, j) ∈ Z2.

0 2 j + 2

1
jj + 1

i

i+ 1

i+ 2

Figure 8.2: A generic labelled scheme.

The labelled scheme associated to the pair (i, j) will be denoted li,j , and
the subclass of pruned maps that have li,j as labelled scheme will be denoted
Pi,j . Given (i, j) ∈ Z2, we want to compute Pi,j (z). To do so, we replace
every edge of li,j by a valid branch whose labels agree with the labels of li,j .
A branch starts at a black vertex. There are 4 ways to place the stems of
the first two vertices, as shown in Figure 8.3.
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i i i i

i i

i i

i + 1 i + 1 i + 1 i + 1

i + 1 i + 1

i + 1 i + 1i + 1

i− 1

i− 1 i

i− 1i + 2 i + 2

i + 2

Figure 8.3: The first step of a branch.

The branches that go from a black vertex to a white vertex are made of
steps like these. The height variation of a step is the difference between its
initial left label and its final left label. As shown in Figure 8.3, 2 of these
steps remain in the same height, one of them increases its height by 1 and the
remaining one decreases it by 1. These steps are known as weighted Motzkin
steps, and they form weighted Motzkin paths when put one after the other.
The height variation of a weighted Motzkin path is the sum of the variations
of its weighted Motzkin steps. A black-to-white edge of the labelled scheme
whose initial labels are (i, i+ 1) and whose final labels are (j, j + 1) can be
replaced by a weighted Motzkin path that goes from height i to height j.

Let A be the class of weighted Motzkin paths that go from height 0
to height −1 and remain non-negative until the last step, counted by their
number of instems. Their generating function A (z) satisfies the following
recurrence relation.

A = z
(
1 + 2A+A2

)
.

Indeed, there are three possibilities:

• We start with a descending step and we are done.

• We start by a step that remains in the same height and then we have
an element of A.

• We start with an ascending step and then we have two consecutive
elements of A.
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We can also write
z−1 = A−1 + 2 +A.

Let B be the class of weighted Motzkin paths that go from height 0 to
height 0, counted by their number of instems. Their generating function
B (z) satisfies the following recurrence relation.

B = 1 + 2zB + 2zAB.

This can be shown by a similar argument as before. By isolating B and
substituting z we get

B =
1

1− 2z − 2zA
=

1

1− 2(1+A)
A−1+2+A

=
A−1 + 2 +A

A−1 −A
=

1 +A

1−A
.

Let Ci,j be the class of weighted Motzkin paths that go from height i to
height j, counted by their number of instems. It is clear that their generating
function Ci,j (z) can be expressed in the following way:

Ci,j = BA|j−i|.

A black-to-black branch in a pruned map is just a black-to-white branch
with an additional edge.

i i

j
j

j + 2

j + 2

j + 1 j + 1

i + 1 i + 1

Figure 8.4: A black-to-black branch.
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Let Di,j be the class of black-to-black branches whose initial left label is
i and whose final left label is j, counted by their number of instems. In the
light of Figure 8.4, their generating function Di,j (z) can be expressed in the
following way:

Di,j = Ci,jz + Ci,j+1z.

Taking into account Figure 8.2, we can now enumerate Pi,j . We have
that

Pi,j = Ci,0 · Cj+1,1 ·Di+1,j ·Dj,i

= z2B4A|i|A|j|
(
A|i−j+1| +A|i−j|

)(
A|i−j| +A|i−j+1|

)
= z2B4A|i|+|j|

(
A|i−j+1| +A|i−j|

)2
.

To enumerate P, we just have to sum for all i, j ∈ Z.

P =
∑
i,j∈Z

Pi,j

=
∑
i,j∈Z

z2B4A|i|+|j|
(
A|i−j+1| +A|i−j|

)2

= z2B4
∑
i,j∈Z

A|i|+|j|
(
A|i−j+1| +A|i−j|

)2

· · ·

= z2B4

(
A2 + 1

)
(A+ 1)4

(A3 − 1)2

= z2
(
1 +A

1−A

)4
(
A2 + 1

)
(A+ 1)4

(A2 +A+ 1)2 (A− 1)2

= z2
(
A2 + 1

)
(A+ 1)8

(A2 +A+ 1)2 (A− 1)6

= z2
(
A2 + 1

) (
A2 + 2A+ 1

)4
(A2 +A+ 1)2 (A2 − 2A+ 1)3

= z2
(
A+A−1

) (
A+ 2 +A−1

)4
(A+ 1 +A−1)2 (A− 2 +A−1)3

= z2
(
z−1 − 2

)
z−4

(z−1 − 1)2 (z−1 − 4)3

=
z2 (2z − 1)

(z − 1)2 (4z − 1)3
.
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We can finally enumerate O.

O (t) = 3

∫ t

0
U (z) dz by Lemma 8.2

= 3

∫ t

0

∂T

∂z
P (T (z)) dz by Lemma 8.6

= 3

(∫ z

0
P (η) dη

)
(T (t))

=

(
z3

(1− z) (1− 4z)2

)
(T (t)) .

Putting everything together, we get the following theorem.

Theorem 8.8. Bipartite 3-face-colorable cubic maps of genus 1 are enumer-
ated by

C (z) =
T (z)3

(1− T (z)) (1− 4T (z))2
,

where T (z) is the unique generating function satisfying T (z) = z + 2T (z)2.
In particular, C (z) is a rational function of T (z).
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Chapter 9

Future work

In view of Theorem 8.8, we can formulate the following conjecture.

Conjecture. Bipartite 3-face-colorable cubic maps of arbitrary genus are
enumerated by a generating function which is a rational function of T (z).

Since blossoming bijections in [8] produce enumerative results in which
there is scheme by scheme rationality, we hope that will also be the case for
these maps.

Besides extending Theorem 8.8 to higher genus, another line of work is
to look for similar enumerative results for m > 3.
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