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Abstract

We determine the number of labelled chordal planar graphs with n vertices,
which is asymptotically c1·n−5/2γnn! for a constant c1 > 0 and γ ≈ 11.89235.
We also determine the number of rooted simple chordal planar maps with n
edges, which is asymptotically c2n−3/2δn, where δ = 1/σ ≈ 6.40375, and σ
is an algebraic number of degree 12. The proofs are based on combinatorial
decompositions and singularity analysis. Chordal planar graphs (or maps)
are a natural example of a subcritical class of graphs in which the class of
3-connected graphs is relatively rich. The 3-connected members are precisely
chordal triangulations, those obtained starting fromK4 by repeatedly adding
vertices adjacent to an existing triangular face.
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Chapter 1

Introduction

Chordal graphs have been much studied in structural graph theory and graph
algorithms (see for instance [11]), but much less from the point of view of
enumeration. It is known that the asymptotic number of labelled chordal
graphs with n vertices is

(
n

n/2

)
2n

2/4; an explanation for this estimate is that
as n goes to infinity almost all chordal graphs with n vertices are split, that
is, the vertex set can be partitioned into a clique and an independent set [2].
See also [18] for results on the exact counting of chordal labelled graphs.

On the other hand, there has been much work on counting planar graphs
and related classes of graphs since the seminal work by Giménez and Noy
[9]. Here we focus on planar graphs that are at the same time chordal. To
count them we use, as in [9], the canonical decomposition of graphs into k-
connected components for k = 1, 2, 3. The starting point is the enumeration
of 3-connected chordal planar graphs: these are precisely the chordal tri-
angulations, which when suitably rooted are in bijection with ternary trees.
Then we use the decomposition of 2-connected graphs into 3-connected com-
ponents. An important difference with the class of all planar graphs is that
one cannot compose more than two graphs in series since otherwise a chord-
less cycle is created. A more significant difference is that the class of chordal
planar graphs is subcritical, instead of being critical as the class of all planar
graphs: this is reflected by the polynomial term n−5/2 of the asymptotic
estimates for the number of graphs in the class [6], as opposed to n−7/2 for
all planar graphs [9]. Thus we have a natural example in which the class of
3-connected graphs is relatively rich, yet the class is subcritical.

Our first result is the following.

Theorem 1. Let gn be the number of labelled chordal planar graphs with n
vertices, cn those which are connected, and bn those which are 2-connected.
Then, as n→ ∞, we have

1. gn ∼ g · n−5/2γnn!, γ ≈ 11.89235, g ≈ 0.00027205

2. cn ∼ c · n−5/2γnn!, c ≈ 0.00027194,
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3. bn ∼ b · n−5/2γnb n!, γb ≈ 10.76897, b ≈ 0.00016215.

We can add to the previous estimates the formula (see [1]) for the number
tn of 3-connected labelled chordal graphs

tn =

(
n

3

)
(3n− 9)!

(2n− 4)!
≈ t · n−5/2(27/4)nn!, t =

4
√
3

310
√
π
. (1.1)

As a corollary of Theorem 1, the limiting probability that a random
labelled planar chordal graph (with the uniform distribution on graphs with
n vertices) is connected tends to p = c/g ≈ 0.99963 as n → ∞. In fact it
is straightforward to show [10] that the number of connected components is
asymptotically distributed as 1+X, whereX is a Poisson law with parameter
C0 ≈ 0.00037470, a value computed at the end of Chapter 4, so that p =
e−C0 .

Our second result is about rooted maps. A rooted map is a connected
planar multigraph with a fixed embedding in the plane in which an edge (the
root edge) is distinguished and directed. Rooted maps where first enumerated
by Tutte [16] and have been since then the object of much study (see [15]
for definitions on maps and an overview on their enumeration). We only
consider simple maps (those with no loop or multiple edge) since they are
the natural objects with respect to the property of being chordal.

Theorem 2. Let Mn be the number of rooted chordal simple planar maps
with n edges, and Bn those which are 2-connected. Then, as n → ∞, we
have

1. Bn ∼ b · n−3/2 · σ−n
b , with b ≈ 0.071674 and σ−1

b ≈ 3.65370,

2. Mn ∼ m · n−3/2 · σ−n, with m ≈ 0.12596 and σ−1 ≈ 6.40375.

The proof is again based on the structure of 3-connected chordal maps.
As opposed to the class of general maps, the class of simple chordal maps
is again subcritical. This is reflected in the term n−3/2 instead of the usual
n−5/2 for classes of planar maps. Other natural subcritical classes are out-
erplanar maps [8] and series-parallel maps [4], but these two classes do not
contain 3-connected graphs.

All the numerical computations were done using Maple 2021.
Chapter 2 contains all the definitions, notions and tools we need to prove

our results. In Chapter 3 we analyse the combinatorial structure of chordal
planar graphs according to their connectivity and deduce functional equa-
tions satisfied by the associated generating functions. Chapter 4 is devoted
to the singularity analysis of said generating functions and concludes the
proof of Theorem 1. Chapter 5 is the proof of Theorem 2.
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Chapter 2

Preliminaries

In Sections 2.1 and 2.2 we present the basic tools we use through this thesis:
generating functions, the symbolic method and the singularity analysis of
generating functions. The main reference in these sections is the book Ana-
lytic Combinatorics [7], by Philippe Flajolet and Robert Sedgewick, though
we also draw heavily on the book Random Trees [3], by Michael Drmota.

In Section 2.3 we introduce chordal graphs and characterize their 3-
connected planar instances.

Section 2.4 is dedicated to the so-called dissymmetry theorem, a useful
result that we use a couple of times.

2.1 Generating functions and the symbolic
method

Definition 2.1. A combinatorial class is a set A together with a size function
|·| : A → N such that the number of objects in A with any given size is finite.
We usually denote by An or an the number of objects of size n in A.

In our setting, combinatorial classes will be families of graphs or maps,
and the size function will be either the number of vertices (in the case of
graphs) or edges (in the case of maps). There are two basic classes: the
neutral class E , consisting of a single element ε of size 0, and the atomic
class Z, consisting of a single element of size 1, called the atom.

Definition 2.2. The ordinary generating function of a combinatorial class
A is the formal power series

A(x) =
∑
n≥0

Anx
n.

Observe that we can also write

A(x) =
∑
α∈A

x|α|.
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It is also common to denote [xn]A(x) = An. This is called coefficient extrac-
tion.

The symbolic method is a method for building combinatorial classes by
combining simpler classes using some constructions. The point of doing
this is that the combinatorial constructions correspond to some operations
between the generating functions of the classes involved, so that the enumer-
ative properties of one class can be deduced from the enumerative properties
of the simpler ones. We present the most basic constructions, which are the
ones we will use. We do not give the proof of the operation between gener-
ating functions that corresponds to the each construction, they are not hard
and can be found in [7]. In the following lines, B and C are combinatorial
classes.

1. Combinatorial sum (disjoint union). The sum A = B + C is the
class that has the elements of both B and C and preserves the original
size of each element. If B and C are not disjoint, we “artificially”
distinguish their elements to make them disjoint. One has that

A(x) = B(x) + C(x).

2. Cartesian product. The product A = B × C is defined by

A = {(β, γ) | β ∈ B, γ ∈ C} ,

with size function |(β, γ)| = |β|+ |γ|. One has that

A(x) = B(x) · C(x).

3. Sequence. Suppose that B contains no object of size zero. Then, the
sequence A = Seq(B) is defined as

A = E + B + (B × B) + (B × B × B) + · · · .

Intuitively, it is the class of finite sequences of elements in B. The size
function is given by the sums and products. One has that

A(x) = 1 +B(x) +B(x)2 + · · · = 1

1−B(x)
.

4. Substitution or composition. The substitution of C into B, denoted
by A = B ◦ C is the result of replacing each object β in B of size n
by n elements of C, while preserving the underlying structure of β.
Formally,

A =
∑
β∈B

Eβ × C|β|,
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where each Eβ is a neutral class and the summatory and power are
given, respectively, by the combinatorial sum and the cartesian product
defined above. One has that

A(x) = B(C(x)).

5. Pointing. The pointing of B, denoted by A = B• is the result of
replacing each object β in B of size n by n distinct objects, while
preserving the underlying structure of β. Formally,

A =
∑
β∈B

β ×

 |β|⋃
i=1

Ei

 ,

where each Ei is a neutral class. Intuitively, this corresponds to dis-
tinguishing all possible atoms. For example, from graphs we obtain
rooted graphs. One has that

A(x) = xB′(x).

If, instead, one wishes to distinguish an atom and remove it, it suffices
to differenciate:

A(x) = B′(x).

Often, the combinatorial objects we deal with are labelled. For instance,
labelled graphs are graphs for which every vertex has a distinct integer la-
bel and the set of labels is a set of consecutive integers, starting at 1. A
class containing objects with such labellings (no repetitions and consecutive
labels starting at 1) is called a labelled combinatorial class. For reasons we
will explain shortly, it is convenient to use exponential generating functions
instead of ordinary ones for labelled classes.

Definition 2.3. The exponential generating function of a class A is the
formal power series

A(x) =
∑
n≥0

An
xn

n!
.

The cartesian product of combinatorial classes defined above does not
behave well with labelled classes, since a pair of labelled objects will have
repeated labels. Thus, we redefine the product for labelled classes.

6. Labelled product. Suppose that B and C are labelled combinatorial
classes. The labelled product β ∗ γ of two labelled objects β ∈ B and
γ ∈ C is the set of all possible labelled pairs (β′, γ′) that preserve the
relative order of the labels of β and γ in their original labellings.
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The labelled product A = B ∗ C is obtained by taking the ordered pairs
from B × C and performing all order-consistent relabellings:

A =
⋃
β∈B
γ∈C

β ∗ γ.

One has that
A(x) = B(x) · C(x),

which is only true because we use exponential generating functions for
labelled classes instead of ordinary ones.

The other constructions that use the cartesian product in the case of ordi-
nary combinatorial classes are defined using the labelled product for labelled
combinatorial classes, so that the relations between the generating functions
are the same.

We define one last construction, which only makes sense for labelled
classes.

7. Set. Suppose that B contains no object of size zero. Then, the set
A = Set(B) is defined as

A = Seq(B)/ ∼,

where ∼ is an equivalence relation identifying sequences that are per-
mutations of each other. Intuitively, it is the class of finite sets of
elements in B. One has that

A(x) = 1 +
B(x)

1!
+
B(x)2

2!
+
B(x)3

3!
+ · · · = eB(x) ≡ exp (B(x)) .

Sometimes we will want to mark some parameters in our combinatorial
classes. For example, if we are dealing with a class A of graphs, we may
want to keep track of edges in addition to vertices. If An,m is the number of
graphs in A with n vertices and m edges, we define the bivariate generating
function of A with parameter edges as

A(x, y) =
∑

n,m≥0

An,mx
nym =

∑
α∈A

x|α|ye(α),

where e(α) is the number of edges of α. If the class is labelled, then we use
exponential bivariate generating functions:

A(x, y) =
∑

n,m≥0

An,m
xn

n!
ym =

∑
α∈A

x|α|

n!
ye(α).
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2.2 Singularity analysis of generating functions

In the previous section we defined generating functions as formal power se-
ries, formal objects that admit some algebraic operations. Now we will con-
sider them as analytic objects, specifically complex functions. This allows
us to use some powerful tools to extract information about their coefficients.
The exact values of these coefficients are usually hard to compute, so we try
to find their asymptotic behaviour. Precisely, for a given combinatorial class
A, we want to find a function f : N → N such that limn→∞An/f(n) = 1.
We say that f is the asymptotic estimate of A and write An ∼ f(n).
For many classes of combinatorial objects, the typical asymptotic growth
is of the form An ∼ Knθ(n), where θ(n) is subexponential, meaning that
limn→∞(θ(n))

1
n = 1. To calculate K and θ(n), we rely on the two principles

stated in [7, Chapter IV]:

First Principle of Coefficient Asymptotics. The location of a func-
tion’s singularities dictates the exponential growth (Kn) of its coeffi-
cients.
Second Principle of Coefficient Asymptotics. The nature of a
function’s singularities determines the associated subexponential factor
(θ(n)).

The precise formulation of the first principle is given by the following
theorem, which is taken from [7, Theorem IV.7].

Lemma 2.1 (location of singularities). Let A(x) be a generating function
analytic at 0 and suppose that ρ is its smallest singularity in modulus. Then,
ρ is a positive real number and

n
√
[xn]A(x) ∼ ρ−1.

It should be noted that the fact that ρ is a positive real number is a
direct consequence of Pringsheim’s theorem.

To compute the subexponential growth, we can use the so-called transfer
theorem.

Lemma 2.2 (transfer theorem). Assume that f(x) has radius of convergence
ρ > 0 and admits an analytic continuation to an open domain of the form

∆(R,ϕ) = {x : |x| < R, x ̸= ρ, | arg(x− ρ)| > ϕ},

for some R > ρ and 0 < ϕ < π/2. Further assume that f(x) verifies, when
x ∼ ρ such that x ∈ ∆(ϕ,R),

f(x) ∼ c ·
(
1− x

ρ

)−α

,
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for some c > 0 and α /∈ {0,−1,−2, . . . }. Then, the coefficients of f(x)
satisfy

[xn]f(x) ∼ c

Γ(α)
nα−1ρ−n as n→ ∞.

Another important result that we use is the so-called Drmota-Lalley-
Woods’ theorem, which deals with generating functions that are given by
systems of equations. We state here the version in [3, Theorem 2.33].

Lemma 2.3 (Drmota-Lalley-Woods’ theorem). Let F(x,y,u) = (F1(x,y,
u), . . . , FN (x,y,u)) be a non-linear system of functions analytic around x =
0, y = (y1, . . . , yN ) = 0, u = (u1, . . . , uk) = 0, whose Taylor coefficients are
all non-negative, such that F(0,y,u) = 0, F(x,0,u) ̸= 0, Fx(x,y,u) ̸= 0.
Furthermore, assume that the dependency graph of F is strongly connected
and that the region of convergence of F is large enough so that there exists a
complex neighbourhood U of u = 1 = (1, . . . , 1), where the system

y = F(x,y,u),
0 = det(I − Fy(x,y,u)),

has solutions x = x0(u and y = y0(u) that are real, positive and minimal
for positive real u ∈ U .

Let
y = y(x,u) = (y1(x,u), . . . , yN (x,u))

denote the analytic solutions of the system

y = F(x,y,u)

with y(0,u) = 0.
Then there exist ε > 0 such that yj(x,u) admit a representation of the

form

yj(x,u) = gj(x,u)− hj(x,u)
√
1− x

x0(u)

for u ∈ U , |x − x0(u| < ε and |arg(x − x0(u)| ≠ 0, where gj(x,u) ̸= 0 and
hj(x,u) ̸= 0 are analytic functions with (gj(x,u))j = (yj(x,u))j = y0(u).

Furthermore, if [xn]yj(x,1) > 0 for 1 ≤ j ≤ N and for sufficiently large
n ≥ n1, then there exists 0 < δ < ε such that yj(x,u) is analytic in (x,u) for
u ∈ U and |x − x0(u)| ≥ ε but |x| ≤ |x0(u)| + δ (this condition guarantees
that y(x,u)) has a unique smallest singularity with |x| = |x0(u)|).

The other analytic results that we use will be cited when needed.
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2.3 Chordal graphs

Definition 2.4. A graph is chordal (or triangulated) if it has no induced
cycles of length greater than 3.

Chordality can be defined in a variety of equivalent ways. In the following
proposition, we present three alternative characterizations of chordal graphs.
These well-known results first appeared in [14].

Proposition 2.1. A graph is chordal if and only if any of the following
conditions hold.

(i) All cycles of length greater than 3 have a chord, which is an edge not
in the cycle connecting two of the vertices in the cycle.

(ii) Every minimal separator is a clique.

(iii) It admits a perfect elimination ordering, i.e., an ordering of the vertices
such that the neighbours of any vertex v that occur after v in the order
form a clique.

Proof. It is clear that (i) is equivalent to the notion of chordality given in
Definition 2.4.

Let us show that (i) implies (ii). Consider a minimal separator S and
suppose that u, v ∈ S are not connected by an edge. Let A,B be two
connected components of V \ S. Since S is minimal, both u and v have
some neighbour in A and B. Now consider the shortest paths of the form
ua1a2 . . . akv and ub1b2 . . . blv, where ai ∈ A and bi ∈ B. Together they form
a cycle of length at least 4 with no chords, which is a contradiction.

We now prove that (ii) implies (iii). We proceed by induction on the
number of vertices. If our graph is complete, any ordering is a perfect elimi-
nation ordering. Otherwise, let v be a vertex that is not connected to every
other vertex. Then, the set of its neighbours, N(v), is a separating set, and
thus it forms a clique. We set v as the first vertex in the ordering and the
remaining vertices can be ordered by virtue of the hypothesis of induction.

Finally, (iii) implies (i) because in any cycle, the neighbours of the first
vertex in the ordering are connected, which means that there is a chord
unless the length of the cycle is 3.

Definition 2.5. Chordal (or stacked) triangulations are the maps obtained
from a K4 by repeatedly adding a vertex in the interior of a triangular face
and making it adjacent to the three vertices of the face.

Observe that this is equivalent to gluing copies of K4 through triangles
without gluing more than 2 through any triangle.

Proposition 2.2. 3-connected chordal planar graphs are chordal triangula-
tions.
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Before going to the proof, we should make a couple of remarks. Observe
that we are establishing a correspondance between a class of graphs and a
class of maps. If we wanted to be precise, we should say that the class of
graphs is the same as the underlying graphs of the class of maps. However,
it makes sense to write the statement in this way because 3-connected pla-
nar chordal graphs admit a unique embedding on S2. This can be seen by
following the proof, but it is also a particular case of Whitney’s theorem,
which says that every 3-connected planar graph admits a unique embedding
on the sphere.

Proof. We proceed by induction on the number of vertices. The smallest
3-connected graph is K4, which is chordal and planar. Suppose that the
number of vertices is greater than 4 and consider the first vertex in the
perfect elimination ordering, v. v has at most 3 neighbours because they form
a clique and the graph is planar. But it also has at least 3 neighbours because
the graph is 3-connected. Therefore, v has exactly 3 neighbours, which form
a triangle. Note that v belongs to no separating set of size 3, because it
should be adjacent to, at least, the 2 other vertices in the separating set and
2 other vertices in the components that become separated, but it has only 3
neighbours. The graph obtained by deleting v is, thus, 3-connected, chordal
and planar, and the hypothesis of induction concludes the proof.

2.4 The dissymmetry theorem

The dissymmetry theorem is a useful result to un root certain structures.

Lemma 2.4 (dissymmetry theorem). Let A be a class of trees. Then, there
is a bijection

A+A•→• ≃ A• +A•−•,

where A•,A•−• and A•→• are the generating functions of trees in A rooted
at vertices, edges and directed edges, respectively.

Proof. For a given tree T ∈ A, we distinguish two cases.

• If the center of T is a vertex, we associate the tree rooted at the center
to the unrooted tree, a tree rooted at any other vertex v to the tree
rooted at a directed edge pointing towards the center whose starting
point is v and a tree rooted at an undirected edge to the tree rooted
at that edge directed away from the center.

• If the center of T is an edge, we associate the tree rooted at the center
to the unrooted tree, a tree rooted at any other undirected edge to
the tree rooted at the same edge directed away from the center and a
tree rooted at a vertex v to the tree rooted at a directed edge pointing
towards the center whose starting point is v (in case v belongs to the
center, the edge is directed towards the other vertex of the center).
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We will apply this theorem not to trees, but to tree-decomposable classes.
A tree-decomposable class is a class for which every object has a different
associated tree. These trees encode in some way the structure of the objects
in the class. In particular, the vertices and edges of the trees correspond to
some parts of the object, as we will see in the following chapter. Therefore,
rooting the encoding trees in a vertex or edge translates to distinguishing
these corresponding parts in the encoded object. This allows us to express
the generating function of our class in terms of the generating function of
the same class of objects but with some parts distinguished.

Since the classes of objects we are interested in are graphs and maps, we
will use the words vertex and edge when refering to these objects and we
will use the words node and link to talk about the vertices and edges of the
encoding trees, in order to avoid confusions.

16



Chapter 3

Generating functions of chordal
planar graphs

This chapter is devoted to derivating the equations that define the generating
function of chordal planar graphs. In order to do so, we use, as in [7], the
canonical decomposition of graphs into k-connected components, for k =
1, 2, 3.

The decomposition of a graph into connected and 2-conencted compo-
nents is quite simple and is explained in Section 3.3. The decomposition of
2-connected graphs into 3-connected components is more involved; the full
details can be found in [16] or [17]. For our purposes, all we need to know
is that networks (a concept defined later) are parallel compositions of series
compositions and 3-connected components.

In Section 3.1 we obtain the generating functions of 3-connected chordal
planar graphs, in Section 3.2 we go to the 2-connected level and in Section
3.3 we finish with connected and general chordal planar graphs.

3.1 3-connected chordal planar graphs

Let T (x) be the generating function of labelled 3-connected chordal planar
graphs rooted at a directed edge, counted by the number of vertices minus
two.

Proposition 3.1. We have that

T (x) =
xS(x)

2
, (3.1)

where S(x) is the generating function of labelled ternary trees counted by the
number of internal vertices given by

S(x) = x (1 + S(x))3 . (3.2)
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Proof. Chordal triangulations with a marked face and a marked directed
edge in this face are in bijection with ternary trees. Indeed, take the marked
face to be the external face of the initial K4. The three children of the root of
the ternary tree correspond to the other faces of the initialK4. Subdividing a
face corresponds to giving three chindren to its associated leaf in the ternary
tree. The faces of the triangulation are always distinguishable thanks to the
marked directed edge.

Since there are two possible faces to mark in a chordal triangulation
rooted at a directed edge and the number of vertices in a chordal triangula-
tion is the number of internal vertices in its corresponding ternary tree plus
three, 2T (x) = xS(x).

Moreover, (3.2) follows from the fact that a ternary tree is a root with
three children whose subtrees are either empty or ternary trees.

It is well known that [xn]S(x) = 1
2n+1

(
3n
n

)
, from which (1.1) follows.

We will later need the generating function counting labelled unrooted
chordal triangulations, let us denote it by U(x). One way to compute it
would be to introduce the variable y in T (x) and U(x) counting edges, in such
a way that i![xiyj ]T (x, y) is the number of labelled chordal triangulations
rooted at a directed edge with i + 2 vertices (the 2 from the root edge
being unlabelled) and j + 1 edges; and that i![xiyj ]U(x, y) is the number of
labelled chordal triangulations with i vertices and y edges. These generating
functions satisfy the relation

x2

2
T (x, y) =

∂

∂y
U(x, y),

and therefore U(x) can be obtained by algebraic integration:

U(x) =

(
x2

2

∫
T (x, y)dy

)
(x, 1).

Alternatively, one can use the dissymmetry theorem to avoid this inte-
gration and keep the proof purely combinatorial.

Lemma 3.1. U(x) is given by

U(x) =
x3

24

(
S(x)− S(x)2

)
.

Proof. Labelled chordal triangulations with n vertices are in bijection with
the class of trees with n−3 nodes endowed with a labelling that satisfies the
following conditions.

1. Every node is labelled with a subset of size 4 of {1, . . . , n}.

2. The intersection of the label of a node with the labels of its neighbours
has size 3 and this intersection is different for each neighbour. In
particular, every node has degree at most 4.
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3. The graph induced by the nodes whose label contains a given i ∈
{1, . . . , n} is connected.

Indeed, the nodes of the tree correspond to the 4-cliques in the triangulation,
their labels correspond to the labels of the 4 vertices of the 4-clique, and two
nodes are adjacent if the associated 4-cliques are glued through a triangle.

Therefore, the generating function of these encoding trees, counted by
their number of nodes plus 3, is the generating function of labelled chordal
triangulations. We use the dissymmetry theorem on the trees. We denote
by A,A•, A•−• and A•→• the generating functions of A,A•,A•−• and A•→•,
respectively. Note that, since all nodes have different labels, they are distin-
guishable and hence A•→• = 2A•−•.

Rooting a tree at a node corresponds to rooting a chordal triangulation
at a 4-clique. We fix the 4 vertices of the clique, and then at each triangle
we attach a (possibly empty) chordal triangulation. This gives

A• =
x4

24
(1 + S(x))4 =

x3

24
S(x) (1 + S(x)) .

Rooting at a link corresponds to rooting a chordal triangulation at a triangle
shared by two 4-cliques. We fix the 3 vertices of the clique and then attach
two chordal triangulations rooted at it. Taking into account symmetries this
gives

A•−• =
x3

12
S(x)2.

Finally, we have

U(x) = A = A• +A•−• −A•→• = A• −A•−• =
x3

24
S(x) (1 + S(x))− x3

12
S(x)2

=
x3

24
(S(x)− S(x)2).

3.2 2-connected chordal planar graphs

Definition 3.1. Networks are 2-connected labelled chordal graphs rooted
at a directed edge, the endpoints of which are not marked.

Let B(x, y) and E(x, y) be the generating functions of 2-connected chor-
dal planar graps and networks, respectively, where x marks vertices and y
marks edges. The relation between these generating functions is

E(x, y) =
2y

x2
∂

∂y
B(x, y).
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Lemma 3.2. The generating function of networks is given by

E(x, y) = y exp

(
xE(x, y)2 +

T
(
xE(x, y)3

)
E(x, y)

)
. (3.3)

Proof. This equation reflects the fact that networks are parallel compositions
of series compositions and 3-connected components. Since our graphs are
chordal, they cannot have induced cycles of length greater than 3. Therefore,
at most 2 networks can be composed in series, forming a triangle. The factor
y encodes the root edge, the exponential encodes a (possibly empty) set
of parallel networks, the term xE(x, y)2 encodes the series composition of
exactly two networks, and the term T

(
xE(x, y)3

)
/E(x, y) encodes chordal

triangulations whose non-root edges have been replaced by networks (note
that the number of non-root edges in a triangulation with n − 2 vertices is
3n− 1).

As before, one could obtain B(x, y) from E(x, y) by algebraic integration:

B(x, y) =
x2

2

∫
1

y
E(x, y)dy. (3.4)

But again, we do it using the dissymmetry theorem.

Lemma 3.3. One has that

B(x) =
x2

2

(
E(x)− xE(x)3

12

(
S
(
xE(x)3

)2
+ 5S

(
xE(x)3

)
+ 8
))

, (3.5)

where B(x) = B(x, 1) and E(x) = E(x, 1).

Proof. 2-connected chordal planar graphs can be encoded by trees with nodes
of three types: e (edge), s (series, i.e., a triangle) and t (triangulation).
Indeed, as we saw, 2-connected chordal planar graphs are the result of gluing
triangles and chordal triangulations through edges. There are only links of
type s−e and t−e, which represent the fact that a triangle or a triangulation
is glued through that edge to something else. Thus, nodes of type e always
have degree at least 2. Figure 3.1 contains an example of a 2-connected graph
and its encoding tree. The nodes of the tree contain all the information about
the subgraph they represent: the labels of its vertices and its structure in
the case of triangulations. For these encoding trees to be in bijection with 2-
connected chordal planar graphs, they must satisfy the following conditions.

1. The edge represented by a node of type e appears in all its neighbours.

2. The graph induced by the nodes that contain some vertex with a given
label is connected.
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Figure 3.1: The tree decomposition of a 2-connected chordal planar graph.

3. The set of labels that appear in some node is of the form {1, . . . , n}, for
some n that will correspond to the number of vertices of the encoded
2-connected chordal planar graph.

The lines above are correct if the graph consisting of a single edge is
not considered a 2-connected graph. However, for reasons we will explain
later, it is convenient to count this single edge as a valid 2-connected chordal
planar graph. We will have to add it to B(x) individually.

To use the dissymmetry theorem, we need to compute the generating
functions Rs(x), Rt(x), Re(x), Rs−e(x) and Rt−e(x).

Rooting the tree at a node of type s corresponds to fixing three unordered
vertices of a triangle and attaching a (possibly empty) network at each of
the three edges. Thus, Rs(x) = x3E(x)3/6.

Rooting at a node of type t corresponds to attaching a network at each of
the edges of an unrooted chordal triangulation. Since the number of vertices
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and edges in a chordal triangulation are related by e = 3(v − 2), we have
that Rt(x) = U(xE(x)3)/E(x)6.

Rooting at a node of type e corresponds to fixing the two unordered ver-
tices of the edge and attaching a network with at least two parallel compo-
nents. This is encoded by substracting the first two terms of the exponential
in (3.3), which gives Re(x) =

x2

2

(
E(x)− 1− xE(x)2 − T (xE(x)3)/E(x)

)
.

Rooting at a link of type s−e corresponds to rooting a graph at a triangle
with one of its sides distinguished. Therefore, we fix the three vertices of
the triangle (the two vertices on the root edge are unordered) and we attach
a non-empty network to the root edge and any network to each of the two
remaining edges. This yields Re−s(x) =

x3

2 E(x)2 (E(x)− 1).
Finally, rooting at a link of type t − e corresponds to rooting at a

triangulation with a distinguished edge and attaching a network to each
of its edges. The term T

(
xE(x)3

)
is explained as before and this gives

Re−t(x) =
x2

2 T (xE(x)3)(E(x)− 1)/E(x).
Putting everything together, we obtain

B(x) =
x2

2
+R•(x) +R•−• − 2R•→•

=
x2

2
+R•(x)−R•−•

=
x2

2
+Rs(x) +Rt(x) +Re(x)−Rs−e(x)−Rt−e(x)

=
x2

2

(
E(x)− xE(x)3

12

(
S
(
xE(x)3

)2
+ 5S

(
xE(x)3

)
+ 8
))

.

Note that the first summand, x2/2, corresponds to the single edge

3.3 Connected and arbitrary chordal planar
graphs

If one takes a connected graph and cuts it through all of its cut vertices,
the resulting components are obviously 2-connected. They are called its
2-connected components or blocks. Note that here single edges count as 2-
connected graphs, since they have no cut vertex, which is why we chose to
count them in B(x). In our context, the 2-connected components are planar
and chordal and, conversely, the result of glowing 2-connected planar chordal
graphs through vertices is always a 2-connected planar chordal graph. In
other words, a connected graph is planar and chordal if and only if all its
2-connected components are also planar and chordal. This is often stated
saying that the class of chordal planar maps is block-stable.

Here we should introduce a relevant notion:
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Definition 3.2. Suppose that G is a block-stable class of labelled graphs
and denote the subclasses of connected graphs and 2-connected graphs by C
and B, their associated exponential generating functions by C(x) and B(x)
with radius of convergence ρb and ρc, respectively. The class G is said to be
subcritical [6] if

ρcC
′(ρc) < ρb. (3.6)

This condition has important implications on the structure of a class of
graphs. Intuitively, subcritical classes are “tree-like” in some sense [10] exhib-
ited for instance by the fact that their scaling limit is the continuum random
tree [12], which means that the global structure is essentially determined
by the block-decomposition tree, while the size of the blocks is bounded in
expectation and at most logarithmic.

Let C(x) denote the generating function of connected chordal planar
graphs. We have the following lemma, which is valid for all block-stable
classes of graphs.

Lemma 3.4. The relation between C(x) and B(x) is given by

C•(x) = xeB
′(C•(x)), (3.7)

where C•(x) = xC ′(x) is the generating function of connected chordal planar
graphs rooted at a vertex.

Proof. Indeed, the root vertex, encoded by the first instance of x, belongs
to a (possibly empty) set of 2-connected components, which is encoded by
the exponential. The other vertices of each of these 2-connected components
may be cut vertices, which is why they are substituted by C•(x).

Observe from (3.7) that in the subcritical case B′ is not a source of
singularities. Instead, they have to come from a branch point.

Finally, an arbitrary chordal planar graph is a set of connected compo-
nents. Thus, if we denote by G(x) the generating function of chordal planar
graphs, we have that

G(x) = eC(x). (3.8)
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Chapter 4

Asymptotic analysis of chordal
planar graphs

In this chapter, we do the singularity analysis of the generating functions
obtained in the previous one, completing the proof of Theorem 1.

Section 4.1 is devoted to the analysis of the genertating functions of 2-
connected chordal planar graphs and Section 4.2 deals with the generating
functions of connected and general chordal planar graphs.

4.1 2-connected graphs

Using (3.1) with x = x(1 + F )3 and setting y = 1, F = F (x) = E(x) − 1
and S = S(x(1+F )3), we transform Equations (3.2) and (3.3) into a system
amenable to Lemma 2.3, with u = 1, as follows:

F = exp

(
x(1 + F )2 +

x(1 + F )2S

2

)
− 1,

S = x(1 + F )3(1 + S)3.

(4.1)

Let Φ(x, S, F ) and Ψ(x, S, F ) be the right hand-side of the first and second
equation in (4.1), respectively. Those functions are entire and define a system
with a strongly connected dependency graph between variables S and F .
Furthermore, both have non-negative coefficients and vanish at x = 0, while
they satisfy Φ(x, 0, 0) ̸= 0 and Ψ(x, 0, 0) ̸= 0, but also Φx(x, S, F ) ̸= 0
(where Φx = ∂Φ/∂x) and Ψx(x, S, F ) ̸= 0. Finally, sytem (4.1) extended by
its Jacobian admits a solution that is non-zero. It is given by the following
approximations:

ρb ≈ 0.092859,

E0 = E(ρb) = 1 + F (ρb) ≈ 1.16454,

S0 = S(ρbE
3
0) ≈ 0.41919.
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Thus the hypotheses of Lemma 2.3 are verified. This implies in particular
that ρb is the unique dominant singularity of the function E(x), i.e. on the
boundary of the disk of convergence, and that E(x) admits the following
analytic continuation in a domain of the form ∆(Rb, ϕb) for some Rb > ρb
and 0 < ϕb < π/2:

E(x) = E0 − E1

√
1− x

ρb
+O

(
1− x

ρb

)
, (4.2)

for x ∼ ρb and x ∈ ∆(Rb, ϕb), where E1 > 0 is computed next. Since S is
itself a function of x and F , (4.1) can be rewritten as F = Θ(x, F ), where
Θ is analytic at (ρb, F0) with F0 = F (ρb). One checks that Θx(ρb, F0) ̸= 0,
ΘF (ρb, F0) = 0 and ΘFF (ρb, F0) ̸= 0. And we can apply [7, Lemma VII.3]
(see also [3, Remark 2.20]) to obtain

E1 = F1 =

√
2ρbΘx(ρb, F0)

ΘFF (ρb, F0)
≈ 0.092354. (4.3)

Furthermore, Lemma 2.3 implies a similar result for S = S(x(1+F )3). Note
also that ρbE3

0 = 0.14665 < 4/27, where 4/27 is the dominant singularity of
S(x). This implies thar the composition scheme S(xE(x)3) is subcritical in
the sense that S is not the source of the singularity.

With those results at hand, we can finally consider the generating func-
tion B(x). Given the expression (3.5) and the fact that the scheme is sub-
critical, the dominant singularity of B(x) is the same as that of E(x) and
it is furthermore unique. We show next that B(x) admits a singular expan-
sion at x = ρb similar to E(x). First we extend the system (4.1) so that it
includes the variable y:

F = y exp

(
x(1 + F )2 +

x(1 + F )2S

2

)
− 1,

S = x(1 + F )3(1 + S)3,

(4.4)

where now F = F (x, y). By Lemma 2.3 (setting u = y) there exist three
functions ρb(y), f0(y) and f1(y) analytic in a neighbourhood W of 1 such
that for y ∈W and x ∼ ρb(y) with |arg(x−ρb(y))| ≠ 0 the following singular
expansion holds

E(x, y) = 1 + F (x, y)

= 1 + f0(y)− f1(y)

√
1− x

ρb(y)
+O

(
1− x

ρb(y)

)
,

(4.5)

where ρb(1) = ρb, 1 + f0(1) = E0 and f1(1) = E1. From there, applying [3,
Theorem 2.30] to (3.4) and setting y = 1, we obtain that B(x) = B(x, 1)
admits an analytic continuation of the form

B(x) = B0 −B2

(
1− x

ρb

)
+B3

(
1− x

ρb

)3/2

+O

(
1− x

ρb

)2

,
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for x ∼ ρb and x ∈ ∆(Rb, ϕb). The above coefficients can be computed
by substituting into (3.5) the expansions of E(x) and S(xE(x)3) when x =
ρb(1−X2), with X =

√
1− x/ρb. This gives

B0 ≈ 0.0044796,

B2 ≈ 0.0085328,

B3 ≈ 0.00038321.

The estimate on bn follows from Lemma 2.2, with b = 3B3/(4
√
π) ≈ 0.00016

215.

4.2 Connected and arbitrary graphs

The composition scheme (3.7) is subcritical because B′′(ρb) → ∞ (see [10]).
This means in particular that the singularities of C•(x) come from a branch
point and not from those of B(x) and are obtained by solving

ρ = τe−B′(τ) and τB′′(τ) = 1,

with τ = C•(ρ) < ρb. To find such a solution, one must first compute E′(x)
and E′′(x) and then B′′(x). This is a routine but lengthy computation, best
solved numerically together with equations (3.2) and (3.3), and which gives
the following approximate solutions:

τ ≈ 0.092859 and E(τ) ≈ 1.16446. (4.6)

From this we obtain that the singularity of C•(x) at x = ρ given by

ρ = τe−B′(τ) ≈ 0.084088.

As before C•(x) can be extended analytically to a domain of the form
∆(R,ϕ) for some R > ρ and 0 < ϕ < π/2. The same holds for C(x) (see
[10, Proposition 3.10.(1)]), which in fact verifies

C(x) = C0 − C2

(
1− x

ρ

)
+ C3

(
1− x

ρ

)3/2

+O

(
1− x

ρ

)2

,

for x ∼ ρ and x ∈ ∆(R,ϕ). The above coefficients are given by:

C0 = τ(1 + log ρ− log τ) +B(τ) ≈ 0.00037470,

C2 = τ ≈ 0.092859,

C3 =
3

2

√
2ρ exp(B′(τ))

τB′′′(τ)− τB′′(τ)2 + 2B′′(τ)
≈ 0.00027194.

The estimate for cn is again a consequence of Lemma 2.2. The same goes
for the series G(x, y) = eC(x,y) of arbitrary chordal planar graphs. Since
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G(x) = eC0(1−C2(1− x/ρ) +C3(1− x/ρ)3/2 +O(1− x/ρ)2) for x ∼ ρ and
x ∈ ∆(ϕ,R), we have

G0 = eC0 ≈ 1.00037,

G2 = C2e
C0 ≈ 0.092894,

G3 = C3e
C0 ≈ 0.00027205,

and the estimate for gn follows. This concludes the proof of Theorem 1.
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Chapter 5

Simple chordal planar maps

This chapter is the proof of Theorem 2. Section 5.1 is dedicated to the
2-connected simple chordal maps and Section 5.2 to all maps.

5.1 Decomposition of 2-connected simple chordal
maps.

Let D(x) be the generating function of simple 2-connected chordal maps,
where x marks the number of edges minus 1, and let S(x) be the generating
function of ternary trees satisfying (3.2). Similarly to the case of graphs,
a simple 2-connected chordal map can be decomposed into a sequence of
smaller chordal maps. As opposed to the situation for graphs the planar
embedding provides a linear ordering, which is why we use the sequence
instead of the set construction. The maps in the sequence are either a triangle
rooted at an edge, where each side of the two non-root edges (four sides in
total) is replaced by a map, or 3-connected maps in which the two sides of
every edge are replaced by a map. This gives

D(x) =
1

1− x2D(x)4 (1 + S (x3D(x)6))
. (5.1)

Now, let B(x) be the generating function counting simple 2-connected
chordal maps, with x now marking the total number of edges, so that B =
B(x) = xD(x). Algebraic elimination between (3.2) and (5.1) gives the
following irreducible polynomial equation satisfied by B:

B9 − x2B5 + x3B4 + x3B3 − 3x4B2 + 3x5B − x6 = 0. (5.2)

Therefore, B(x) is an algebraic function and its analysis in the rest of the
proof will follow the approach detailed in [7, Chapter VII.7]. For instance,
B(x) can be represented at x = 0 as a Taylor series with non-negative
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coefficients and radius of convergence σb, for some σb > 0, corresponding to
a branch of the curve (5.2) passing through the origin, as follows:

B(x) = x+ x3 + 5x5 + x6 + 35x7 + 16x8 + 288x9 +O(x10).

Next, we find the value of σb. By Pringsheim’s theorem (see [7, Theorem
IV.6]), it must be a singularity of B(x). Since B(x) is algebraic, its singu-
larities must be among the roots of the discriminant of (5.2) with respect to
B, which up to a trivially non-zero factor is equal to

387420489x6 + 573956280x5 + 184705272x4 − 81168524x3

−15907392x2 + 3326272x− 135424.

This polynomial admits σb ≈ 0.27370 as unique positive real root and it can
be readily checked that no other root ψ satisfies |ψ| = σb.

Finally, we determine the singular expansion of B(x) locally around σb.
As B(x) is algebraic and has no other singularity on the circle of radius
σb, there exists R′

b > σb and 0 < ϕ′b < π/2 for which its representation at
x = 0 admits an analytic continuation to a domain at x = σb of the form
∆(R′

b, ϕ
′
b). It can in fact be computed from (5.2) using Newton’s polygon

algorithm. This gives a singular expansion of the form:

B(x) = B(σb) + b1

√
1− x

σb
+O

(
1− x

σb

)
, (5.3)

for x ∼ σb and x ∈ ∆(R′
b, ϕ

′
b), where B(σb) ≈ 0.33301 and b1 ≈ 0.12704.

The estimate on Bn then follows from Lemma 2.2.

5.2 Decomposition of simple chordal maps

Let M(x) be the generating function of all simple chordal maps, where x
marks the total number of edges. The decomposition of a map into block is
given by the equation

M(x) = B
(
x(1 +M(x))2

)
, (5.4)

reflecting the fact that a map is obtained from its 2-connected core by at-
taching a (possibly empty) map at each corner [16]. Since being simple and
chordal is preserved by taking 2-connected components, the same equation
holds for simple chordal maps.

We proceed as in the previous section. First, by algebraic elimination be-
tween (5.2) and (5.4), we obtain an irreducible polynomial equation satisfied
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by M =M(x):

0 = x6M12 + 3x5 (4x− 1)M11 + x3
(
66x3 − 30x2 + 3x− 1

)
M10

+
(
220x6 − 135x5 + 24x4 − 7x3 + x2 − 1

)
M9

+ x2
(
495x4 − 360x3 + 84x2 − 21x+ 4

)
M8

+ x2
(
792x4 − 630x3 + 168x2 − 35x+ 6

)
M7

+ x2
(
924x4 − 756x3 + 210x2 − 35x+ 4

)
M6

+ x2
(
792x4 − 630x3 + 168x2 − 21x+ 1

)
M5

+ x3
(
495x3 − 360x2 + 84x1 − 7

)
M4

+ x3
(
220x3 − 135x2 + 24x− 1

)
M3

+ 3x4
(
22x2 − 10x+ 1

)
M2 + 3x5 (4x− 1)M + x6.

(5.5)

From the curve (5.5) we get that M(x) can be represented at x = 0 as the fol-
lowing Taylor series with non-negative coefficients and radius of convergence
σ > 0:

M(x) = x+ 2x2 + 6x3 + 22x4 + 92x5 + 419x6 + 2025x7 + 10214x8

+ 53192x9 +O(x10).

The discriminant of (5.5) with respect to M is, up to a trivially non-zero
factor, given by

2035256037376x12 − 2215690119168x11 + 6474387490048x10

+ 1262789263168x9 − 3620212090976x8 + 1275725763644x7

− 301902286683x6 + 60575733276x5 − 13112588384x4

− 5212588972x3 + 1812419712x2 − 148471488x+ 3656448.

(5.6)

It admits two positive real roots, given approximately by 0.15616 and 0.4951
2. However 0.49512 cannot be the radius of convergence of M(x) since it
is larger than σb. Therefore σ ≈ 0.15616, and it can be readily checked
that (5.6) admits no other zero of modulus σ. By a standard compactness
argument, this means that there exists R′ > σ and 0 < ϕ′ < π/2 for which
the representation of M(x) at x = 0 admits an analytic continuation to a
domain at x = σ of the form ∆(R′, ϕ′). It is given by

M(x) =M(σ) +m1

√
1− x

σ
+O

(
1− x

σ

)
, (5.7)

for x ∼ σ and x ∈ ∆(R′, ϕ′), where M(σ) ≈ 0.31055 and m1 ≈ 0.22326.
Note that the class of simple chordal maps is subcritical in the sense, similar
to (3.6), that the composition scheme in (5.4) is subcritical, that is, σ(1 +
M(σ)2) ≈ 0.26821 < σb. The estimate on Mn is obtained from Lemma 2.2
as before, and this concludes the proof of Theorem 2.
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Chapter 6

Concluding remarks

From the system (4.4) and [3, Theorem 2.35] we could obtain, applying the
so-called quasi-powers theorem [7], a central limit theorem for the number of
edges in a uniform random 2-connected chordal planar graph with n vertices
as n → ∞. This result is to be expectd and fits into a general scheme of
similar Gaussian parameters in subcritical graph classes (see for instance [6],
and [5] and [13] for some generalisations). It would be of interest to study in
the context of chordal planar graphs other parameters, particularly extremal
parameters [10].

Furthermore, by sligthly adapting the scheme developed in this paper,
one could in principle enumerate several related families of chordal graphs,
such as outerplanar graphs, series-parallel graphs, planar multigraphs and
also non-planar graphs, such as forbidding K3,3 or K5 as a minor. For
chordal graphs, forbidding K5 as a minor is equivalent to the property of
having tree-width at most three.

A future line of research is to enumerate chordal graphs with bounded
tree-width. An interesting aspect of this class of graphs is that the com-
position scheme (3.7) naturally generalizes to any connectivity. In other
words, since separating sets form cliques, k-connected chordal graphs can be
obtained by gluing (k + 1)-connected chordal graphs through k-cliques.

Another possible continuation of this work is to enumerate unlabelled
chordal planar graphs. This should be fesible with the help of Polya theory
by taking into account the symmetries of the 3-connected graphs.

To conclude, we display the first numbers of labelled chordal planar
graphs (resp., chordal maps) counted by vertices (resp., edges) in Table 6.1
(resp., Table 6.2).
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n gn cn bn
1 1 1 0
2 2 1 1
3 8 4 1
4 61 35 7
5 821 540 110
6 17962 13116 2880
7 589912 462868 108486
8 26990539 22189056 5376448
9 1611421595 1364476032 330554736
10 119106036226 102768330140 24223100940
11 10475032926304 9150009283316 2056900853260
12 1064759262580675 937871756182824 198279609266376
13 122455558249650523 108501459033647056 21365210239261824
14 15683814373288014514 13957140054455406368 2542622031178234096
15 2210104382919809469776 1973316500054545453200 331005569819483825280
16 339419270505312015418873 303844760227083629476736 46769563108388612386560

Table 6.1: Numbers of arbitrary, connected and 2-connected labelled chordal
planar graphs with n vertices.

n Mn Bn

1 1 1
2 2 0
3 6 1
4 22 0
5 92 5
6 419 1
7 2025 35
8 10214 16
9 53192 288
10 283921 210
11 1545326 2607
12 8544766 2612
13 47867107 25155
14 271091848 31885
15 1549624321 254255
16 8929009486 386672

Table 6.2: Numbers of arbitrary and 2-connected simple chordal maps with
n edges.
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