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m-constellations and m-Eulerian maps

Let m ≥ 2. We say that a planar map whose faces are bicolored
(black and white) is a planar m-constellation if

(i) adjacent faces have different colors,
(ii) black faces have degree m and white faces have degree mi for

some integer i ≥ 1 (which can be different among white faces).
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Maps of higher genus

A map of genus g is a graph embedded in the torus with g holes
such that its faces are contractible. Maps are considered up to
orientation preserving homeomorphisms.



m-constellations and m-Eulerian maps
Let m ≥ 2. We say that a map whose faces are bicolored (black and
white) is an m-constellation if

(i) adjacent faces have different colors,
(ii) black faces have degree m and white faces have degree mi for

some integer i ≥ 1 (which can be different among white faces),
(iii) vertices can be labeled with integers in {1, 2, . . . ,m} in such a

way that turning clockwise around any black face the labels
read 1, 2, . . . ,m.
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m-constellations and m-Eulerian maps
Let m ≥ 2. We say that a map whose faces are bicolored (black and
white) is an m-constellation if

(i) adjacent faces have different colors,
(ii) black faces have degree m and white faces have degree mi for

some integer i ≥ 1 (which can be different among white faces),
(iii) vertices can be labeled with integers in {1, 2, . . . ,m} in such a

way that turning clockwise around any black face the labels
read 1, 2, . . . ,m.

m-Eulerian maps are the
dual maps of
m-constellations
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well-known Eulerian maps.
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m-constellations and m-Eulerian maps
• In the planar case, 2-Eulerian maps are essentially the same as the
well-known Eulerian maps.

Planar Eulerian map. Planar 2-Eulerian map.

• In higher genus, 2-Eulerian maps have the additional condition (iii).
They are essentially face-bicolorable maps.

Its dual map. Its dual planar 2-constellation.



m-constellations and m-Eulerian maps

The method introduced by Tutte for the enumeration of planar maps based
on catalytic variables has not been effective to deal with constellations.

The successful attempts of [Bousquet-Mélou,Schaeffer’00] and [Bouttier,Di
Francesco,Guitter’04] use bijections. They give explicit formulas for the
enumeration of constellations:

Theorem. The number of rooted planar m-constellations with di white
faces of degree mi is

m (m− 1)
f−1 [(m−1)n]!

[(m−1)n−f+2]!

∏
i≥1

1
di!

(
mi−1
i−1

)di
,

where n =
∑

idi is the number of black faces and f =
∑

di is the
number of white faces.



m-constellations and m-Eulerian maps

The work of [Chapuy’09] extends the bijection of [Bouttier,Di
Francesco,Guitter’04] to higher genus.

Our goal is to extend the bijection of [Bousquet-Mélou,Schaeffer’00] to
higher genus and obtain similar explicit formulas.

Since their formulation of the bijection is hard to extend to higher
genus, we reformulate it in the planar case in such a way that it is easy
to generalize.

This reformulation is inspired by the work of [Lepoutre’19], on
face-bicolorable maps of higher genus.



Our results

This theorem extends the bijections of [Bousquet-Mélou,Schaeffer’00] and
[Lepoutre’19] at the same time.

Using this bijection, we give the enumeration of a very particular case.

Corollary. Rooted 3-constellations of genus 1 whose white faces are
triangles (counted by their number of white faces) are enumerated by

C (z) = T (z)3

(1−T (z))(1−4T (z))2

where T (z) is the unique generating function satisfying
T (z) = z + 2T (z)2.

Theorem. Rooted m-constellations of genus g are in bijection with
well-rooted m-bipartite unicellular maps of genus g.
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Blossoming trees are plane trees decorated with half-edges or stems.
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• The stems form a cyclic parentheses word.
We can define their matching.

• The unmatched instems are called single. A blossoming tree is
well-rooted if its root instem is single.
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What does it look like?

• The degrees are preserved
and it is bicolored.

• It has a good labelling.

• It is well-rooted.

• It is a rooted blossoming
tree.



m-bipartite trees

Let m ≥ 2. We say that a rooted blossoming tree with m more
instems than outstems and whose vertices are bicolored (black and
white) is an m-bipartite tree if

(i) neighbouring vertices have different colors, instems are attached
to white vertices and outstems are attached to black vertices,

(ii) black vertices have degree m,
(iii) white vertices have degree mi for some integer i ≥ 1 (which can

be different among white vertices),
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Let m ≥ 2. We say that a rooted blossoming tree with m more
instems than outstems and whose vertices are bicolored (black and
white) is an m-bipartite tree if

(i) neighbouring vertices have different colors, instems are attached
to white vertices and outstems are attached to black vertices,

(ii) black vertices have degree m,
(iii) white vertices have degree mi for some integer i ≥ 1 (which can

be different among white vertices),

j j + 1 j j −m+ 1 j +m− 1j

and, when endowed with its good labelling and good orientation,
(iv) the edges whose origin is a black vertex either decrease by 1 or

increase by m− 1,
(v) the edges whose origin is a white vertex decrease by m− 1.



m-bipartite trees

j j + 1 j j −m+ 1 j +m− 1j
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The closure of a well-rooted m-bipartite
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unicellular
blossoming map.

We want to
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The map is endowed
with a good
orientation.



m-bipartite unicellular maps

Let m ≥ 2. We say that a rooted blossoming unicellular map with m
more instems than outstems and whose vertices are bicolored (black
and white) is an m-bipartite unicellular map if

(i) neighbouring vertices have different colors, instems are attached
to white vertices and outstems are attached to black vertices,

(ii) black vertices have degree m,
(iii) white vertices have degree mi for some integer i ≥ 1 (which can

be different among white vertices),

j j + 1 j j −m+ 1 j +m− 1j

and, when endowed with its good labelling and good orientation,
(iv) the edges whose origin is a black vertex either decrease by 1 or

increase by m− 1,
(v) the edges whose origin is a white vertex decrease by m− 1.
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Theorem. Rooted m-constellations of genus g are in bijection with
well-rooted m-bipartite unicellular maps of genus g.

The bijection theorem and its application

We now restrict ourselves to 3-constellations of genus 1 whose white faces
are triangles. Their dual maps are bipartite 3-face-colorable cubic
maps of genus 1.

We follow the framework introduced by [Chapuy,Marcus,Schaeffer’09] to
study unicellular maps.
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• The treelike parts are enumerated
by

T (z) = z + 2T (z)2.

• The branches are weighted
Motzkin paths that have to agree
with the labels.

Theorem. Rooted 3-constellations of genus 1 whose white faces are
triangles (counted by their number of white faces) are enumerated by

C (z) = T (z)3

(1−T (z))(1−4T (z))2
.



Further work

Conjecture. Rooted 3-constellations of arbitrary genus whose white
faces are triangles are enumerated by a rational function of T (z).

Then try to extend the results to m > 3.


