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Definition. A is a graph obtained from a (k + 1)-clique by
successively adding a new vertex connected to all vertices of an existing

k-clique.
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lteratively add a new vertex connected to the vertices of an existing
(complete subgraph).

Definition. A graph is if it has no induced cycle of lengh greater

than 3.
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Definition. The of a graph G is the minimum k such that G

Is the subgraph of a k-tree.
erap 5/16



Labelled vs unlabelled

A graph with n vertices is if each vertex carries a different label
in {1,2,...,n}.

6/16



Labelled vs unlabelled

A graph with n vertices is if each vertex carries a different label
in {1,2,...,n}.
In an graph, the vertices are undistinguishable.

6/16



Labelled vs unlabelled

A graph with n vertices is if each vertex carries a different label
in {1,2,...,n}.
In an graph, the vertices are undistinguishable.

2
1/\,3
3
2/\1
1
3/\2



The symbolic method

Our goal is to determine the number of graphs in the family with size n.

7/16



The symbolic method

Our goal is to determine the number of graphs in the family with size n.

Definition. A is a pair (A, |-|) where
e A is a family of combinatorial objects,
e |-|: A— Nis a size function,

e The number of objects with size n is a,, < 0.

7/16



The symbolic method

Our goal is to determine the number of graphs in the family with size n.

Definition. A is a pair (A, |-|) where
e A is a family of combinatorial objects,
e |-|: A— Nis a size function,

e The number of objects with size n is a,, < 0.

Definition. The Definition. The
(OGF) of (EGF) of
(A, |- ]) is the formal power series | (A,|-|) is the formal power series
n _ An n
Alx) = Z anx”. Ax) = Z e
n>0 n>0
Suitable for unlabelled classes. Suitable for labelled classes.

7/16



The symbolic method

Our goal is to determine the number of graphs in the family with size n.

Definition. A is a pair (A, |-|) where
e A is a family of combinatorial objects,
e |-|: A— Nis a size function,

e The number of objects with size n is a,, < 0.

Definition. The Definition. The
(OGF) of (EGF) of
(A,|-]) is the formal power series | (A, |-]|) is the formal power series
n _ An n
Alx) = Z anx”. Ax) = Z e
n>0 n>0

Suitable for unlabelled classes. Suitable for labelled classes.
Operations between translate into relations involving their

. The goal is to obtain (a system of) equations
that determine the GF of our class. 7/16
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Labelled trees

Let 7 be the class of labelled trees.

1 1., 3., 16,
T(x)—ﬁaj—l—ix —|—§a:‘ —I—Iaﬁ

2 3 1
1 1 2
° ® °
1 3 2 1 3 2

Rooting. Let 7° be the class of rooted labelled trees.
Since all vertices are distinguishable, there are n ways to root a tree with

n vertices. Thus,

Unrooting. To do the inverse operation, we can simply integrate:

T(:r;):/T'(a:)/acd:U. 3/16



Labelled trees

/<l

9/16



Labelled trees

4 1 .
’ [N
4 1 .
K4 1 -~
4 .
s 1 [N
. 1 .
¢ ' [N
’ LN
4 1 .
* 1 .
4 .
’ 1 .
4 <

9/16



Labelled trees

4 ' .
’ [N
4 1 .
K4 1 -~
. LN
s 1 [N
. ] [N
. ' .
’ -
| |
’ LN
. ! N
’ 1 .
* >

Set of rooted trees

9/16



Labelled trees

4 ' .
’ [N
4 1 .
K4 1 -~
. LN
s 1 [N
. ] [N
. ' .
’ -
| |
’ LN
. ! N
’ 1 .
4 <

Set of rooted trees

Implicit equation:

3

T'(az):xexp(T'(a:))zx—l—xz—l—S%—l—---. (2)

9/16



Labelled trees

L4 A
L4 A3
L4 A
L4 A3
L4 A
L4 A\
L4 -
L4 A
L4 >
L4 Al
L4 >
L4 Al
4 >

Set of rooted trees

Implicit equation:

3

T'(x):xexp(T'(x))zx—l—az‘Q—l—%—l—---. (2)

By using the we obtain:

o n ° . n—1 L ° oo n—2
Tol = nlla™T* (@) =0 = [Tl = [Tel/n=n""%



Polya theory

1
3 .(////k\\\\, 2

10/16



Polya theory

10/16



Polya theory

— S1852

10/16



Polya theory

3 )

— S1852

10/16



Polya theory

s ) L
!

3
— 8 (s7 + s182)

3 labelled graphs
in the class

3
3

— 1S S1S

3'( 1 + S$1 2)

— 5189

10/16



Polya theory

— 57 (53 4 51592)

s ) L
!

3 labelled graphs
in the class

3
5(8? + 5152)

— S1852

Cycle index sum
Zg(Sl, S592,83,... )

10/16



Polya theory

1
1
— 5% ) —'(Si’ + 5152)
3 2 3 labelled graphs
in the class
3
1 5(8? + 3182)
— 7 182 Cycle index sum
3 2 Zg(Sl,SQ,Sg,...)

Theorem [Pdlya 1937] i
The OGF of the unlabelled class G

Is given by

G(z) = Zg(x,a* a%,...). 10/16



Polya theory

1
1
— 5% ) —'(S? + 5152)
3 2 3 labelled graphs
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— 7 182 Cycle index sum
3 2 Zg(Sl,SQ,Sg,...)

Theorem [Pdlya 1937] i
The OGF of the unlabelled class ¢
. . 3

s given by G(z)= > (3 4+ 2%) = 2°

= 2 3 3!

G(r) = Zg(z,2°,2°,...). 10/16

In our case,




Unlabelled trees

Polya trees: rooted, unlabelled trees.

11/16



Unlabelled trees

Polya trees: rooted, unlabelled trees.

Theorem. [Pélya, 1937]
The OGF P(x) of Pdlya trees is given by

P(z) = zexp(P(x) +

As n — oo we have

with b ~ 2.681127 and p ~ 0.338219.

11/16



Unlabelled trees

Polya trees: rooted, unlabelled trees.

Theorem. [Pélya, 1937]
The OGF P(x) of Pdlya trees is given by

P(z) = zexp(P(x) +

As n — oo we have

with b ~ 2.681127 and p ~ 0.338219.

11/16



Unlabelled trees

Problem!

12/16



Unlabelled trees

Problem!
Rooting is biased in unlabelled graphs.
Not every unlabelled graph of size n gives

rise to n rooted graphs. o’ .

12/16



Unlabelled trees

Problem!
Rooting is biased in unlabelled graphs.
Not every unlabelled graph of size n gives

rise to n rooted graphs. o’ .

Theorem. [Otter, 1948]
The OGF U(x) of unlabelled trees is given by

As n — oo we have

b3p3/2
W
with b ~ 2.681127 and p ~ 0.338219.

—-3/2 _—n

n

"] P(x) ~

Proof. Using the
12/16
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Cycle-pointing

Definition. A is a pair (G, c) where G € G is an
unlabelled graph and c is a cycle of some automorphism of G.

Theorem. [Bodirsky, Fusy, Kang & Vigerske (2007)]
Every unlabelled graph G € G of size n admits exactly n cycle-pointings.

An unbiased rooting (pointing) operator!

They extend Podlya theory to cycle-pointed graphs. In particular, they
manage to unroot Pdlya trees via cycle-pointing and they recover Otter's

formula.
13/16
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Our class of graphs

\Wormald, 1985]: they admit a decomposition into k-connected
components.

|C., Drmota, Noy & Requilé, 2023]: assymptotic enumeration of the
labelled class.

Gin| ~ cp -n75% AT ) as n — 00,

for some ¢; > 0 and v > 1
14/16
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An extension of Pdlya theory

We need to take into account cycles of cliques, not just vertices.

1
The edges are in a cycle of
length 2.
3 “—r 5 g
1
The new edge is in a cycle of length
; , 1 but different type: it flips itself.

What we do:
e Refinement of cycle index sums to encode cycles of cliques.

e Extend cycle-pointing to cycles of cliques.
15/16
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asymptotic enumeration of unlabelled (rooted and unrooted)

e [Gainer-Dewar (2012)], [Gainer-Dewar & Gessel (2014)]: system of
equations to compute the OGF of unlabelled with n vertices.

e [Drmota & Yu Jin (2014)]: asymptotic enumeration of unlabelled

This talk: generalisation of previous results.

o [C. & Requilé (2024+)]: system of equations to compute the OGF of
unlabelled

Future:

e [C. .Drmota & Requilé (soon7)|: asymptotic enumeration of unlabelled
chordal graphs with bounded tree-width.
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