
Enumeration of unlabelled
chordal graphs with bounded

tree-width

DMD 2024 - Alcalá de Henares

Jordi Castellv́ı (CRM)

Work in collaboration with Clément Requilé

1/16

Introduction

How to build a tree?

1/16

Introduction

Iteratively add a new vertex connected to an existing vertex.

How to build a tree?

1/16

Introduction

Iteratively add a new vertex connected to an existing vertex.

How to build a tree?

1/16

Introduction

Iteratively add a new vertex connected to an existing vertex.

How to build a tree?

1/16

Introduction

Iteratively add a new vertex connected to an existing vertex.

How to build a tree?

1/16

Introduction

Iteratively add a new vertex connected to an existing vertex.

How to build a tree?

1/16

Introduction

Iteratively add a new vertex connected to an existing vertex.

How to build a tree?

1/16

Introduction

Iteratively add a new vertex connected to an existing vertex.

How to build a tree?

1/16

Introduction

Iteratively add a new vertex connected to an existing vertex.

How to build a tree?

1/16

Introduction

Iteratively add a new vertex connected to an existing vertex.

How to build a tree?

2/16

Introduction

Iteratively add a new vertex connected to the vertices of an existing edge.

2/16

Introduction

Iteratively add a new vertex connected to the vertices of an existing edge.

2/16

Introduction

Iteratively add a new vertex connected to the vertices of an existing edge.

2/16

Introduction

Iteratively add a new vertex connected to the vertices of an existing edge.

2/16

Introduction

Iteratively add a new vertex connected to the vertices of an existing edge.

2/16

Introduction

Iteratively add a new vertex connected to the vertices of an existing edge.

2/16

Introduction

Iteratively add a new vertex connected to the vertices of an existing edge.

2/16

Introduction

Iteratively add a new vertex connected to the vertices of an existing edge.

2/16

Introduction

Iteratively add a new vertex connected to the vertices of an existing edge.

2/16

Introduction

2-trees

Iteratively add a new vertex connected to the vertices of an existing edge.

3/16

Introduction
Iteratively add a new vertex connected to the vertices of an existing
triangle.

3/16

Introduction
Iteratively add a new vertex connected to the vertices of an existing
triangle.

3/16

Introduction
Iteratively add a new vertex connected to the vertices of an existing
triangle.

3/16

Introduction
Iteratively add a new vertex connected to the vertices of an existing
triangle.

3/16

Introduction
Iteratively add a new vertex connected to the vertices of an existing
triangle.

3/16

Introduction
Iteratively add a new vertex connected to the vertices of an existing
triangle.

3/16

Introduction
Iteratively add a new vertex connected to the vertices of an existing
triangle.

3/16

Introduction

3-trees

Iteratively add a new vertex connected to the vertices of an existing
triangle.

3/16

Introduction

3-trees

Iteratively add a new vertex connected to the vertices of an existing
triangle.

Definition. A k-tree is a graph obtained from a (k + 1)-clique by
successively adding a new vertex connected to all vertices of an existing
k-clique.

4/16

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique (complete subgraph).

4/16

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique (complete subgraph).

4/16

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique (complete subgraph).

4/16

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique (complete subgraph).

4/16

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique (complete subgraph).

4/16

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique (complete subgraph).

4/16

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique (complete subgraph).

4/16

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique (complete subgraph).

4/16

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique (complete subgraph).

4/16

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique (complete subgraph).

4/16

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique (complete subgraph).

4/16

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique (complete subgraph).

4/16

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique (complete subgraph).

4/16

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique (complete subgraph).

4/16

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique (complete subgraph).

4/16

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique (complete subgraph).

4/16

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique (complete subgraph).

4/16

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique (complete subgraph).

4/16

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique (complete subgraph).

4/16

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique (complete subgraph).

4/16

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique (complete subgraph).

Chordal graphs

4/16

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique (complete subgraph).

Chordal graphs

Definition. A graph is chordal if it has no induced cycle of lengh greater
than 3.

5/16

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique of size at most t.

5/16

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique of size at most t.

t = 3

5/16

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique of size at most t.

t = 3

Chordal graphs with tree-width at most t

5/16

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique of size at most t.

t = 3

Chordal graphs with tree-width at most t

Definition. The tree-width of a graph G is the minimum k such that G
is the subgraph of a k-tree.

6/16

Labelled vs unlabelled
A graph with n vertices is labelled if each vertex carries a different label
in {1, 2, . . . , n}.

6/16

Labelled vs unlabelled
A graph with n vertices is labelled if each vertex carries a different label
in {1, 2, . . . , n}.

In an unlabelled graph, the vertices are undistinguishable.

6/16

Labelled vs unlabelled
A graph with n vertices is labelled if each vertex carries a different label
in {1, 2, . . . , n}.

In an unlabelled graph, the vertices are undistinguishable.

1

3

3

2

2

3

2

1

1

7/16

The symbolic method
Our goal is to determine the number of graphs in the family with size n.

7/16

The symbolic method
Our goal is to determine the number of graphs in the family with size n.

Definition. A combinatorial class is a pair (A, | · |) where
• A is a family of combinatorial objects,
• | · | : A → N is a size function,
• The number of objects with size n is an < ∞.

7/16

The symbolic method
Our goal is to determine the number of graphs in the family with size n.

Definition. A combinatorial class is a pair (A, | · |) where
• A is a family of combinatorial objects,
• | · | : A → N is a size function,
• The number of objects with size n is an < ∞.

Definition. The ordinary
generating function (OGF) of
(A, | · |) is the formal power series

A(x) =
∑
n≥0

anx
n.

Suitable for unlabelled classes.

Definition. The exponential
generating function (EGF) of
(A, | · |) is the formal power series

A(x) =
∑
n≥0

an
n!

xn.

Suitable for labelled classes.

7/16

The symbolic method
Our goal is to determine the number of graphs in the family with size n.

Definition. A combinatorial class is a pair (A, | · |) where
• A is a family of combinatorial objects,
• | · | : A → N is a size function,
• The number of objects with size n is an < ∞.

Definition. The ordinary
generating function (OGF) of
(A, | · |) is the formal power series

A(x) =
∑
n≥0

anx
n.

Suitable for unlabelled classes.

Definition. The exponential
generating function (EGF) of
(A, | · |) is the formal power series

A(x) =
∑
n≥0

an
n!

xn.

Suitable for labelled classes.

Operations between classes translate into relations involving their
generating functions. The goal is to obtain (a system of) equations
that determine the GF of our class.

8/16

Labelled trees
Let T be the class of labelled trees.

8/16

Labelled trees
Let T be the class of labelled trees.

T (x) =
1

1!
x+

1

2!
x2 +

3

3!
x3 +

16

4!
x4 · · · .

8/16

Labelled trees
Let T be the class of labelled trees.

T (x) =
1

1!
x+

1

2!
x2 +

3

3!
x3 +

16

4!
x4 · · · .

1

8/16

Labelled trees
Let T be the class of labelled trees.

T (x) =
1

1!
x+

1

2!
x2 +

3

3!
x3 +

16

4!
x4 · · · .

1 1 2

8/16

Labelled trees
Let T be the class of labelled trees.

T (x) =
1

1!
x+

1

2!
x2 +

3

3!
x3 +

16

4!
x4 · · · .

12 3

31 2 23 1

1 1 2

8/16

Labelled trees
Let T be the class of labelled trees.

Rooting. Let T • be the class of rooted labelled trees.
Since all vertices are distinguishable, there are n ways to root a tree with
n vertices. Thus,

T •(x) =
∑
n≥0

n
tn
n!

xn = xT ′(x).

T (x) =
1

1!
x+

1

2!
x2 +

3

3!
x3 +

16

4!
x4 · · · .

12 3

31 2 23 1

1 1 2

8/16

Labelled trees
Let T be the class of labelled trees.

Rooting. Let T • be the class of rooted labelled trees.
Since all vertices are distinguishable, there are n ways to root a tree with
n vertices. Thus,

T •(x) =
∑
n≥0

n
tn
n!

xn = xT ′(x).

Unrooting. To do the inverse operation, we can simply integrate:

T (x) =

∫
T •(x)/x dx.

T (x) =
1

1!
x+

1

2!
x2 +

3

3!
x3 +

16

4!
x4 · · · .

12 3

31 2 23 1

1 1 2

9/16

Labelled trees

9/16

Labelled trees

9/16

Labelled trees

Set of rooted trees

9/16

Labelled trees

Implicit equation:

T •(x) = x exp (T •(x)) = x+ x2 +
3x3

2
+ · · · . (2)

Set of rooted trees

9/16

Labelled trees

Implicit equation:

T •(x) = x exp (T •(x)) = x+ x2 +
3x3

2
+ · · · . (2)

By using the Lagrange inversion formula we obtain:

|T •
n | = n![xn]T •(x) = nn−1 =⇒ |Tn| = |T •

n |/n = nn−2.

Set of rooted trees

10/16

Pólya theory

1

3 2

10/16

Pólya theory

1

3 2

(1)(2)(3) −→ s31

10/16

Pólya theory

1

3 2

(1)(2)(3) −→ s31

1

3 2

(1)(23) −→ s1s2

10/16

Pólya theory

1

3 2

(1)(2)(3) −→ s31

1

3 2

(1)(23) −→ s1s2

1

3!
(s31 + s1s2)

10/16

Pólya theory

1

3 2

(1)(2)(3) −→ s31

1

3 2

(1)(23) −→ s1s2

1

3!
(s31 + s1s2)

3

3!
(s31 + s1s2)

3 labelled graphs
in the class

10/16

Pólya theory

1

3 2

(1)(2)(3) −→ s31

1

3 2

(1)(23) −→ s1s2

1

3!
(s31 + s1s2)

3

3!
(s31 + s1s2)

3 labelled graphs
in the class

Cycle index sum
ZG(s1, s2, s3, . . .)

10/16

Pólya theory

1

3 2

(1)(2)(3) −→ s31

1

3 2

(1)(23) −→ s1s2

1

3!
(s31 + s1s2)

3

3!
(s31 + s1s2)

3 labelled graphs
in the class

Cycle index sum
ZG(s1, s2, s3, . . .)

Theorem [Pólya 1937]
The OGF of the unlabelled class G̃
is given by

G̃(x) = ZG(x, x
2, x3, . . .).

10/16

Pólya theory

1

3 2

(1)(2)(3) −→ s31

1

3 2

(1)(23) −→ s1s2

1

3!
(s31 + s1s2)

3

3!
(s31 + s1s2)

3 labelled graphs
in the class

Cycle index sum
ZG(s1, s2, s3, . . .)

Theorem [Pólya 1937]
The OGF of the unlabelled class G̃
is given by

G̃(x) = ZG(x, x
2, x3, . . .).

In our case,

G(x) =
3

3!
(x3 + x · x2) = x3

11/16

Unlabelled trees
Pólya trees: rooted, unlabelled trees.

11/16

Unlabelled trees
Pólya trees: rooted, unlabelled trees.

Theorem. [Pólya, 1937]
The OGF P (x) of Pólya trees is given by

P (x) = x exp(P (x) +
P (x2)

2
+

P (x3)

3
+ . . .).

As n → ∞ we have

[xn]P (x) ∼
b
√
ρ

2
√
π
· n−3/2 · ρ−n,

with b ≈ 2.681127 and ρ ≈ 0.338219.

11/16

Unlabelled trees
Pólya trees: rooted, unlabelled trees.

Theorem. [Pólya, 1937]
The OGF P (x) of Pólya trees is given by

P (x) = x exp(P (x) +
P (x2)

2
+

P (x3)

3
+ . . .).

As n → ∞ we have

[xn]P (x) ∼
b
√
ρ

2
√
π
· n−3/2 · ρ−n,

with b ≈ 2.681127 and ρ ≈ 0.338219.

What about unrooted unlabelled trees?

12/16

Unlabelled trees

Problem!

12/16

Unlabelled trees

Problem!
Rooting is biased in unlabelled graphs.
Not every unlabelled graph of size n gives
rise to n rooted graphs.

12/16

Unlabelled trees

Problem!

Theorem. [Otter, 1948]
The OGF U(x) of unlabelled trees is given by

U(x) = P (x) +
1

2
(P (x2)− P (x)2).

As n → ∞ we have

[xn]P (x) ∼ b3ρ3/2

4
√
π

· n−3/2 · ρ−n,

with b ≈ 2.681127 and ρ ≈ 0.338219.

Proof. Using the dissymmetry theorem.

Rooting is biased in unlabelled graphs.
Not every unlabelled graph of size n gives
rise to n rooted graphs.

13/16

Cycle-pointing

Definition. A cycle-pointed graph is a pair (G, c) where G ∈ G is an
unlabelled graph and c is a cycle of some automorphism of G.

13/16

Cycle-pointing

Definition. A cycle-pointed graph is a pair (G, c) where G ∈ G is an
unlabelled graph and c is a cycle of some automorphism of G.

Theorem. [Bodirsky, Fusy, Kang & Vigerske (2007)]
Every unlabelled graph G ∈ G of size n admits exactly n cycle-pointings.

13/16

Cycle-pointing

Definition. A cycle-pointed graph is a pair (G, c) where G ∈ G is an
unlabelled graph and c is a cycle of some automorphism of G.

Theorem. [Bodirsky, Fusy, Kang & Vigerske (2007)]
Every unlabelled graph G ∈ G of size n admits exactly n cycle-pointings.

An unbiased rooting (pointing) operator!

13/16

Cycle-pointing

Definition. A cycle-pointed graph is a pair (G, c) where G ∈ G is an
unlabelled graph and c is a cycle of some automorphism of G.

Theorem. [Bodirsky, Fusy, Kang & Vigerske (2007)]
Every unlabelled graph G ∈ G of size n admits exactly n cycle-pointings.

An unbiased rooting (pointing) operator!

They extend Pólya theory to cycle-pointed graphs. In particular, they
manage to unroot Pólya trees via cycle-pointing and they recover Otter’s
formula.

14/16

Our class of graphs

Chordal graphs with
tree-width at most t

14/16

Our class of graphs

Chordal graphs with
tree-width at most t

[Wormald, 1985]: they admit a decomposition into k-connected
components.

14/16

Our class of graphs

Chordal graphs with
tree-width at most t

[Wormald, 1985]: they admit a decomposition into k-connected
components.

[C., Drmota, Noy & Requilé, 2023]: assymptotic enumeration of the
labelled class.

|Gt,n| ∼ ct · n−5/2 · γn
t · n! as n → ∞,

for some ct > 0 and γt > 1

15/16

An extension of Pólya theory
We need to take into account cycles of cliques, not just vertices.

15/16

An extension of Pólya theory
We need to take into account cycles of cliques, not just vertices.

1

3 2

15/16

An extension of Pólya theory
We need to take into account cycles of cliques, not just vertices.

1

3 2

The edges are in a cycle of
length 2.

15/16

An extension of Pólya theory
We need to take into account cycles of cliques, not just vertices.

1

3 2

The edges are in a cycle of
length 2.

1

3 2

The new edge is in a cycle of length
1 but different type: it flips itself.

15/16

An extension of Pólya theory
We need to take into account cycles of cliques, not just vertices.

1

3 2

The edges are in a cycle of
length 2.

1

3 2

The new edge is in a cycle of length
1 but different type: it flips itself.

What we do:
• Refinement of cycle index sums to encode cycles of cliques.
• Extend cycle-pointing to cycles of cliques.

16/16

Results
• [Harary & Palmer (1968)], [Fowler, Gessel, Labelle & Leroux (2002)]:
asymptotic enumeration of unlabelled (rooted and unrooted) 2-trees

16/16

Results
• [Harary & Palmer (1968)], [Fowler, Gessel, Labelle & Leroux (2002)]:
asymptotic enumeration of unlabelled (rooted and unrooted) 2-trees

• [Gainer-Dewar (2012)], [Gainer-Dewar & Gessel (2014)]: system of
equations to compute the OGF of unlabelled k-trees with n vertices.

16/16

Results
• [Harary & Palmer (1968)], [Fowler, Gessel, Labelle & Leroux (2002)]:
asymptotic enumeration of unlabelled (rooted and unrooted) 2-trees

• [Gainer-Dewar (2012)], [Gainer-Dewar & Gessel (2014)]: system of
equations to compute the OGF of unlabelled k-trees with n vertices.

• [Drmota & Yu Jin (2014)]: asymptotic enumeration of unlabelled
k-trees.

16/16

Results
• [Harary & Palmer (1968)], [Fowler, Gessel, Labelle & Leroux (2002)]:
asymptotic enumeration of unlabelled (rooted and unrooted) 2-trees

• [Gainer-Dewar (2012)], [Gainer-Dewar & Gessel (2014)]: system of
equations to compute the OGF of unlabelled k-trees with n vertices.

• [Drmota & Yu Jin (2014)]: asymptotic enumeration of unlabelled
k-trees.

This talk: generalisation of previous results.

• [C. & Requilé (2024+)]: system of equations to compute the OGF of
unlabelled chordal graphs with tree-width ≤ t.

16/16

Results
• [Harary & Palmer (1968)], [Fowler, Gessel, Labelle & Leroux (2002)]:
asymptotic enumeration of unlabelled (rooted and unrooted) 2-trees

• [Gainer-Dewar (2012)], [Gainer-Dewar & Gessel (2014)]: system of
equations to compute the OGF of unlabelled k-trees with n vertices.

• [Drmota & Yu Jin (2014)]: asymptotic enumeration of unlabelled
k-trees.

This talk: generalisation of previous results.

• [C. & Requilé (2024+)]: system of equations to compute the OGF of
unlabelled chordal graphs with tree-width ≤ t.

Future:

• [C.,Drmota & Requilé (soon?)]: asymptotic enumeration of unlabelled
chordal graphs with bounded tree-width.

