Enumeration of unlabelled chordal graphs with bounded tree-width

Jordi Castellví (CRM)

Work in collaboration with Clément Requilé

DMD 2024 - Alcalá de Henares

Introduction

How to build a tree?

Introduction

How to build a tree?

Iteratively add a new vertex connected to an existing vertex.

Introduction

How to build a tree?

Iteratively add a new vertex connected to an existing vertex.

Introduction

How to build a tree?

Iteratively add a new vertex connected to an existing vertex.

Introduction

How to build a tree?

Iteratively add a new vertex connected to an existing vertex.

Introduction

How to build a tree?

Iteratively add a new vertex connected to an existing vertex.

Introduction

How to build a tree?

Iteratively add a new vertex connected to an existing vertex.

Introduction

How to build a tree?

Iteratively add a new vertex connected to an existing vertex.

Introduction

How to build a tree?

Iteratively add a new vertex connected to an existing vertex.

Introduction

How to build a tree?

Iteratively add a new vertex connected to an existing vertex.

Introduction

Iteratively add a new vertex connected to the vertices of an existing edge.

Introduction

Iteratively add a new vertex connected to the vertices of an existing edge.

Introduction

Iteratively add a new vertex connected to the vertices of an existing edge.

Introduction

Iteratively add a new vertex connected to the vertices of an existing edge.

Introduction

Iteratively add a new vertex connected to the vertices of an existing edge.

Introduction

Iteratively add a new vertex connected to the vertices of an existing edge.

Introduction

Iteratively add a new vertex connected to the vertices of an existing edge.

Introduction

Iteratively add a new vertex connected to the vertices of an existing edge.

Introduction

Iteratively add a new vertex connected to the vertices of an existing edge.

Introduction

Iteratively add a new vertex connected to the vertices of an existing edge.

2-trees

Introduction

Iteratively add a new vertex connected to the vertices of an existing triangle.

Introduction

Iteratively add a new vertex connected to the vertices of an existing triangle.

Introduction

Iteratively add a new vertex connected to the vertices of an existing triangle.

Introduction

Iteratively add a new vertex connected to the vertices of an existing triangle.

Introduction

Iteratively add a new vertex connected to the vertices of an existing triangle.

Introduction

Iteratively add a new vertex connected to the vertices of an existing triangle.

Introduction

Iteratively add a new vertex connected to the vertices of an existing triangle.

Introduction

Iteratively add a new vertex connected to the vertices of an existing triangle.

Introduction

Iteratively add a new vertex connected to the vertices of an existing triangle.

3-trees

Definition. A k-tree is a graph obtained from a $(k+1)$-clique by successively adding a new vertex connected to all vertices of an existing k-clique.

Introduction

Iteratively add a new vertex connected to the vertices of an existing clique (complete subgraph).

Introduction

Iteratively add a new vertex connected to the vertices of an existing clique (complete subgraph).

Introduction

Iteratively add a new vertex connected to the vertices of an existing clique (complete subgraph).

Introduction

Iteratively add a new vertex connected to the vertices of an existing clique (complete subgraph).

Introduction

Iteratively add a new vertex connected to the vertices of an existing clique (complete subgraph).

Introduction

Iteratively add a new vertex connected to the vertices of an existing clique (complete subgraph).

Introduction

Iteratively add a new vertex connected to the vertices of an existing clique (complete subgraph).

Introduction

Iteratively add a new vertex connected to the vertices of an existing clique (complete subgraph).

Introduction

Iteratively add a new vertex connected to the vertices of an existing clique (complete subgraph).

Introduction

Iteratively add a new vertex connected to the vertices of an existing clique (complete subgraph).

Introduction

Iteratively add a new vertex connected to the vertices of an existing clique (complete subgraph).

Introduction

Iteratively add a new vertex connected to the vertices of an existing clique (complete subgraph).

Introduction

Iteratively add a new vertex connected to the vertices of an existing clique (complete subgraph).

Introduction

Iteratively add a new vertex connected to the vertices of an existing clique (complete subgraph).

Introduction

Iteratively add a new vertex connected to the vertices of an existing clique (complete subgraph).

Introduction

Iteratively add a new vertex connected to the vertices of an existing clique (complete subgraph).

Introduction

Iteratively add a new vertex connected to the vertices of an existing clique (complete subgraph).

Introduction

Iteratively add a new vertex connected to the vertices of an existing clique (complete subgraph).

Introduction

Iteratively add a new vertex connected to the vertices of an existing clique (complete subgraph).

Introduction

Iteratively add a new vertex connected to the vertices of an existing clique (complete subgraph).

Introduction

Iteratively add a new vertex connected to the vertices of an existing clique (complete subgraph).

Chordal graphs

Introduction

Iteratively add a new vertex connected to the vertices of an existing clique (complete subgraph).

Chordal graphs

Definition. A graph is chordal if it has no induced cycle of lengh greater than 3.

Introduction

Iteratively add a new vertex connected to the vertices of an existing clique of size at most t.

Introduction

Iteratively add a new vertex connected to the vertices of an existing clique of size at most t.

Introduction

Iteratively add a new vertex connected to the vertices of an existing clique of size at most t.

Chordal graphs with tree-width at most t

Introduction

Iteratively add a new vertex connected to the vertices of an existing clique of size at most t.

Chordal graphs with tree-width at most t

Definition. The tree-width of a graph G is the minimum k such that G is the subgraph of a k-tree.

Labelled vs unlabelled

A graph with n vertices is labelled if each vertex carries a different label in $\{1,2, \ldots, n\}$.

Labelled vs unlabelled

A graph with n vertices is labelled if each vertex carries a different label in $\{1,2, \ldots, n\}$.

In an unlabelled graph, the vertices are undistinguishable.

Labelled vs unlabelled

A graph with n vertices is labelled if each vertex carries a different label in $\{1,2, \ldots, n\}$.

In an unlabelled graph, the vertices are undistinguishable.

The symbolic method

Our goal is to determine the number of graphs in the family with size n.

The symbolic method

Our goal is to determine the number of graphs in the family with size n.
Definition. A combinatorial class is a pair $(\mathcal{A},|\cdot|)$ where

- \mathcal{A} is a family of combinatorial objects,
- $|\cdot|: \mathcal{A} \rightarrow \mathbb{N}$ is a size function,
- The number of objects with size n is $a_{n}<\infty$.

The symbolic method

Our goal is to determine the number of graphs in the family with size n.
Definition. A combinatorial class is a pair $(\mathcal{A},|\cdot|)$ where

- \mathcal{A} is a family of combinatorial objects,
- $|\cdot|: \mathcal{A} \rightarrow \mathbb{N}$ is a size function,
- The number of objects with size n is $a_{n}<\infty$.

Definition. The ordinary generating function (OGF) of
$(\mathcal{A},|\cdot|)$ is the formal power series

$$
A(x)=\sum_{n \geq 0} a_{n} x^{n}
$$

Suitable for unlabelled classes.

Definition. The exponential generating function (EGF) of $(\mathcal{A},|\cdot|)$ is the formal power series

$$
A(x)=\sum_{n \geq 0} \frac{a_{n}}{n!} x^{n}
$$

Suitable for labelled classes.

The symbolic method

Our goal is to determine the number of graphs in the family with size n.
Definition. A combinatorial class is a pair $(\mathcal{A},|\cdot|)$ where

- \mathcal{A} is a family of combinatorial objects,
- $|\cdot|: \mathcal{A} \rightarrow \mathbb{N}$ is a size function,
- The number of objects with size n is $a_{n}<\infty$.

Definition. The ordinary
generating function (OGF) of
$(\mathcal{A},|\cdot|)$ is the formal power series

$$
A(x)=\sum_{n \geq 0} a_{n} x^{n}
$$

Suitable for unlabelled classes.

Definition. The exponential generating function (EGF) of $(\mathcal{A},|\cdot|)$ is the formal power series

$$
A(x)=\sum_{n \geq 0} \frac{a_{n}}{n!} x^{n}
$$

Suitable for labelled classes.

Operations between classes translate into relations involving their generating functions. The goal is to obtain (a system of) equations that determine the GF of our class.

Labelled trees

Let \mathcal{T} be the class of labelled trees.

Labelled trees

Let \mathcal{T} be the class of labelled trees.

$$
T(x)=\frac{1}{1!} x+\frac{1}{2!} x^{2}+\frac{3}{3!} x^{3}+\frac{16}{4!} x^{4} \cdots .
$$

Labelled trees

Let \mathcal{T} be the class of labelled trees.

$$
T(x)=\frac{1}{1!} x+\frac{1}{2!} x^{2}+\frac{3}{3!} x^{3}+\frac{16}{4!} x^{4} \cdots .
$$

Labelled trees

Let \mathcal{T} be the class of labelled trees.

$$
T(x)=\frac{1}{1!} x+\frac{1}{2!} x^{2}+\frac{3}{3!} x^{3}+\frac{16}{4!} x^{4} \cdots .
$$

1

Labelled trees

Let \mathcal{T} be the class of labelled trees.

$$
T(x)=\frac{1}{1!} x+\frac{1}{2!} x^{2}+\frac{3}{3!} x^{3}+\frac{16}{4!} x^{4} \cdots
$$

Labelled trees

Let \mathcal{T} be the class of labelled trees.

Rooting. Let \mathcal{T}^{\bullet} be the class of rooted labelled trees. Since all vertices are distinguishable, there are n ways to root a tree with n vertices. Thus,

$$
T^{\bullet}(x)=\sum_{n \geq 0} n \frac{t_{n}}{n!} x^{n}=x T^{\prime}(x)
$$

Labelled trees

Let \mathcal{T} be the class of labelled trees.

$$
T(x)=\frac{1}{1!} x+\frac{1}{2!} x^{2}+\frac{3}{3!} x^{3}+\frac{16}{4!} x^{4} \cdots
$$

Rooting. Let \mathcal{T}^{\bullet} be the class of rooted labelled trees.
Since all vertices are distinguishable, there are n ways to root a tree with n vertices. Thus,

$$
T^{\bullet}(x)=\sum_{n \geq 0} n \frac{t_{n}}{n!} x^{n}=x T^{\prime}(x)
$$

Unrooting. To do the inverse operation, we can simply integrate:

$$
T(x)=\int T^{\bullet}(x) / x d x
$$

Labelled trees

Labelled trees

Labelled trees

Implicit equation:

$$
\begin{equation*}
T^{\bullet}(x)=x \exp \left(T^{\bullet}(x)\right)=x+x^{2}+\frac{3 x^{3}}{2}+\cdots \tag{2}
\end{equation*}
$$

Labelled trees

Implicit equation:

$$
\begin{equation*}
T^{\bullet}(x)=x \exp \left(T^{\bullet}(x)\right)=x+x^{2}+\frac{3 x^{3}}{2}+\cdots \tag{2}
\end{equation*}
$$

By using the Lagrange inversion formula we obtain:

$$
\left|\mathcal{T}_{n}^{\bullet}\right|=n!\left[x^{n}\right] T^{\bullet}(x)=n^{n-1} \Longrightarrow\left|\mathcal{T}_{n}\right|=\left|\mathcal{T}_{n}^{\bullet}\right| / n=n^{n-2} .
$$

Pólya theory

Pólya theory

(1) $(2)(3) \longrightarrow s_{1}^{3}$

Pólya theory

(1) $(2)(3) \longrightarrow s_{1}^{3}$

(1) $(23) \longrightarrow s_{1} s_{2}$

Pólya theory

Pólya theory

Pólya theory

Cycle index sum $Z_{\mathcal{G}}\left(s_{1}, s_{2}, s_{3}, \ldots\right)$

Pólya theory

$$
\begin{aligned}
& \frac{1}{3!}\left(s_{1}^{3}+s_{1} s_{2}\right) \\
& \quad \begin{array}{l}
3 \text { labelled graphs } \\
\text { in the class }
\end{array} \\
& \frac{3}{3!}\left(s_{1}^{3}+s_{1} s_{2}\right) \\
& \text { Cycle index sum } \\
& Z_{\mathcal{G}}\left(s_{1}, s_{2}, s_{3}, \ldots\right)
\end{aligned}
$$

$(1)(23) \longrightarrow s_{1} s_{2}$

Theorem [Pólya 1937]
The OGF of the unlabelled class $\tilde{\mathcal{G}}$ is given by

$$
\tilde{G}(x)=Z_{\mathcal{G}}\left(x, x^{2}, x^{3}, \ldots\right)
$$

Pólya theory

$$
\begin{aligned}
& \frac{1}{3!}\left(s_{1}^{3}+s_{1} s_{2}\right) \\
& \| \begin{array}{l}
3 \text { labelled graphs } \\
\text { in the class }
\end{array} \\
& \frac{3}{3!}\left(s_{1}^{3}+s_{1} s_{2}\right)
\end{aligned}
$$

Cycle index sum $Z_{\mathcal{G}}\left(s_{1}, s_{2}, s_{3}, \ldots\right)$

Theorem [Pólya 1937]
The OGF of the unlabelled class $\tilde{\mathcal{G}}$ is given by

$$
\tilde{G}(x)=Z_{\mathcal{G}}\left(x, x^{2}, x^{3}, \ldots\right) .
$$

In our case,

$$
G(x)=\frac{3}{3!}\left(x^{3}+x \cdot x^{2}\right)=x^{3}
$$

Unlabelled trees

Pólya trees: rooted, unlabelled trees.

Unlabelled trees

Pólya trees: rooted, unlabelled trees.
Theorem. [Pólya, 1937]
The OGF $P(x)$ of Pólya trees is given by

$$
P(x)=x \exp \left(P(x)+\frac{P\left(x^{2}\right)}{2}+\frac{P\left(x^{3}\right)}{3}+\ldots\right)
$$

As $n \rightarrow \infty$ we have

$$
\left[x^{n}\right] P(x) \sim \frac{b \sqrt{\rho}}{2 \sqrt{\pi}} \cdot n^{-3 / 2} \cdot \rho^{-n},
$$

with $b \approx 2.681127$ and $\rho \approx 0.338219$.

Unlabelled trees

Pólya trees: rooted, unlabelled trees.
Theorem. [Pólya, 1937]
The OGF $P(x)$ of Pólya trees is given by

$$
P(x)=x \exp \left(P(x)+\frac{P\left(x^{2}\right)}{2}+\frac{P\left(x^{3}\right)}{3}+\ldots\right)
$$

As $n \rightarrow \infty$ we have

$$
\left[x^{n}\right] P(x) \sim \frac{b \sqrt{\rho}}{2 \sqrt{\pi}} \cdot n^{-3 / 2} \cdot \rho^{-n}
$$

with $b \approx 2.681127$ and $\rho \approx 0.338219$.

What about unrooted unlabelled trees?

Unlabelled trees

Problem!

Unlabelled trees

Problem!

Rooting is biased in unlabelled graphs. Not every unlabelled graph of size n gives rise to n rooted graphs.

Unlabelled trees

Problem!

Rooting is biased in unlabelled graphs. Not every unlabelled graph of size n gives rise to n rooted graphs.

Theorem. [Otter, 1948]
The OGF $U(x)$ of unlabelled trees is given by

$$
U(x)=P(x)+\frac{1}{2}\left(P\left(x^{2}\right)-P(x)^{2}\right)
$$

As $n \rightarrow \infty$ we have

$$
\left[x^{n}\right] P(x) \sim \frac{b^{3} \rho^{3 / 2}}{4 \sqrt{\pi}} \cdot n^{-3 / 2} \cdot \rho^{-n}
$$

with $b \approx 2.681127$ and $\rho \approx 0.338219$.
Proof. Using the dissymmetry theorem.

Cycle-pointing

Definition. A cycle-pointed graph is a pair (G, c) where $G \in \mathcal{G}$ is an unlabelled graph and c is a cycle of some automorphism of G.

Cycle-pointing

Definition. A cycle-pointed graph is a pair (G, c) where $G \in \mathcal{G}$ is an unlabelled graph and c is a cycle of some automorphism of G.

Theorem. [Bodirsky, Fusy, Kang \& Vigerske (2007)]
Every unlabelled graph $G \in \mathcal{G}$ of size n admits exactly n cycle-pointings.

Cycle-pointing

Definition. A cycle-pointed graph is a pair (G, c) where $G \in \mathcal{G}$ is an unlabelled graph and c is a cycle of some automorphism of G.

Theorem. [Bodirsky, Fusy, Kang \& Vigerske (2007)] Every unlabelled graph $G \in \mathcal{G}$ of size n admits exactly n cycle-pointings.
An unbiased rooting (pointing) operator!

Cycle-pointing

Definition. A cycle-pointed graph is a pair (G, c) where $G \in \mathcal{G}$ is an unlabelled graph and c is a cycle of some automorphism of G.

Theorem. [Bodirsky, Fusy, Kang \& Vigerske (2007)]
Every unlabelled graph $G \in \mathcal{G}$ of size n admits exactly n cycle-pointings.

An unbiased rooting (pointing) operator!

They extend Pólya theory to cycle-pointed graphs. In particular, they manage to unroot Pólya trees via cycle-pointing and they recover Otter's formula.

Our class of graphs

Chordal graphs with tree-width at most t

Our class of graphs

Chordal graphs with tree-width at most t

[Wormald, 1985]: they admit a decomposition into k-connected components.

Our class of graphs

Chordal graphs with tree-width at most t

[Wormald, 1985]: they admit a decomposition into k-connected components.
[C., Drmota, Noy \& Requilé, 2023]: assymptotic enumeration of the labelled class.

$$
\left|\mathcal{G}_{t, n}\right| \sim c_{t} \cdot n^{-5 / 2} \cdot \gamma_{t}^{n} \cdot n!\quad \text { as } n \rightarrow \infty
$$

for some $c_{t}>0$ and $\gamma_{t}>1$

An extension of Pólya theory

We need to take into account cycles of cliques, not just vertices.

An extension of Pólya theory

We need to take into account cycles of cliques, not just vertices.

An extension of Pólya theory

We need to take into account cycles of cliques, not just vertices.

The edges are in a cycle of length 2.

An extension of Pólya theory

We need to take into account cycles of cliques, not just vertices.

The edges are in a cycle of length 2.

The new edge is in a cycle of length 1 but different type: it flips itself.

An extension of Pólya theory

We need to take into account cycles of cliques, not just vertices.

The edges are in a cycle of length 2.

The new edge is in a cycle of length 1 but different type: it flips itself.

What we do:

- Refinement of cycle index sums to encode cycles of cliques.
- Extend cycle-pointing to cycles of cliques.

Results

- [Harary \& Palmer (1968)], [Fowler, Gessel, Labelle \& Leroux (2002)]: asymptotic enumeration of unlabelled (rooted and unrooted) 2-trees

Results

- [Harary \& Palmer (1968)], [Fowler, Gessel, Labelle \& Leroux (2002)]: asymptotic enumeration of unlabelled (rooted and unrooted) 2-trees
- [Gainer-Dewar (2012)], [Gainer-Dewar \& Gessel (2014)]: system of equations to compute the OGF of unlabelled k-trees with n vertices.

Results

- [Harary \& Palmer (1968)], [Fowler, Gessel, Labelle \& Leroux (2002)]: asymptotic enumeration of unlabelled (rooted and unrooted) 2-trees
- [Gainer-Dewar (2012)], [Gainer-Dewar \& Gessel (2014)]: system of equations to compute the OGF of unlabelled k-trees with n vertices.
- [Drmota \& Yu Jin (2014)]: asymptotic enumeration of unlabelled k-trees.

Results

- [Harary \& Palmer (1968)], [Fowler, Gessel, Labelle \& Leroux (2002)]: asymptotic enumeration of unlabelled (rooted and unrooted) 2-trees
- [Gainer-Dewar (2012)], [Gainer-Dewar \& Gessel (2014)]: system of equations to compute the OGF of unlabelled k-trees with n vertices.
- [Drmota \& Yu Jin (2014)]: asymptotic enumeration of unlabelled k-trees.

This talk: generalisation of previous results.

- [C. \& Requilé (2024+)]: system of equations to compute the OGF of unlabelled chordal graphs with tree-width $\leq t$.

Results

- [Harary \& Palmer (1968)], [Fowler, Gessel, Labelle \& Leroux (2002)]: asymptotic enumeration of unlabelled (rooted and unrooted) 2-trees
- [Gainer-Dewar (2012)], [Gainer-Dewar \& Gessel (2014)]: system of equations to compute the OGF of unlabelled k-trees with n vertices.
- [Drmota \& Yu Jin (2014)]: asymptotic enumeration of unlabelled k-trees.

This talk: generalisation of previous results.

- [C. \& Requilé (2024+)]: system of equations to compute the OGF of unlabelled chordal graphs with tree-width $\leq t$.

Future:

- [C.,Drmota \& Requilé (soon?)]: asymptotic enumeration of unlabelled chordal graphs with bounded tree-width.

