Chordal graphs with bounded tree-width

Jordi Castellví (UPC)

Work in collaboration with Michael Drmota, Marc Noy and Clément Requilé

Definition. A k-tree is a graph obtained from a (k+1)-clique by successively adding a new vertex connected to all vertices of an existing k-clique.

Definition. A k-tree is a graph obtained from a (k+1)-clique by successively adding a new vertex connected to all vertices of an existing k-clique.

Definition. A k-tree is a graph obtained from a (k+1)-clique by successively adding a new vertex connected to all vertices of an existing k-clique.

• 1-trees are trees

1/15

Definition. A k-tree is a graph obtained from a (k+1)-clique by successively adding a new vertex connected to all vertices of an existing k-clique.

Definition. A k-tree is a graph obtained from a (k+1)-clique by successively adding a new vertex connected to all vertices of an existing k-clique.

Definition. A k-tree is a graph obtained from a (k+1)-clique by successively adding a new vertex connected to all vertices of an existing k-clique.

Definition. A k-tree is a graph obtained from a (k+1)-clique by successively adding a new vertex connected to all vertices of an existing k-clique.

Definition. A k-tree is a graph obtained from a (k+1)-clique by successively adding a new vertex connected to all vertices of an existing k-clique.

Definition. A k-tree is a graph obtained from a (k+1)-clique by successively adding a new vertex connected to all vertices of an existing k-clique.

• 1-trees are trees

Definition. A k-tree is a graph obtained from a (k+1)-clique by successively adding a new vertex connected to all vertices of an existing k-clique.

• 1-trees are trees

Definition. A k-tree is a graph obtained from a (k+1)-clique by successively adding a new vertex connected to all vertices of an existing k-clique.

• 1-trees are trees

Definition. A k-tree is a graph obtained from a (k+1)-clique by successively adding a new vertex connected to all vertices of an existing k-clique.

• 1-trees are trees

Definition. A k-tree is a graph obtained from a (k+1)-clique by successively adding a new vertex connected to all vertices of an existing k-clique.

• 1-trees are trees

Definition. A k-tree is a graph obtained from a (k+1)-clique by successively adding a new vertex connected to all vertices of an existing k-clique.

• 1-trees are trees

Definition. A k-tree is a graph obtained from a (k+1)-clique by successively adding a new vertex connected to all vertices of an existing k-clique.

• 1-trees are trees

Definition. A k-tree is a graph obtained from a (k+1)-clique by successively adding a new vertex connected to all vertices of an existing k-clique.

• 1-trees are trees

Definition. A k-tree is a graph obtained from a (k+1)-clique by successively adding a new vertex connected to all vertices of an existing k-clique.

• 1-trees are trees

• 2-trees

Theorem ([Beineke, Pippert, '69])

The number of labelled k-trees with n vertices is $\binom{n}{k}(kn-k^2+1)^{n-k-2}$.

Definition. The tree-width of a graph G is the minimum k such that G is the subgraph of a k-tree.

Definition. The tree-width of a graph G is the minimum k such that G is the subgraph of a k-tree.

Definition. The tree-width of a graph G is the minimum k such that G is the subgraph of a k-tree.

Definition. The tree-width of a graph G is the minimum k such that G is the subgraph of a k-tree.

Definition. The tree-width of a graph G is the minimum k such that G is the subgraph of a k-tree.

Thus, a graph with tree-width at most k is the subgraph of some k-tree.

Enumeration of graphs with tree-width at most t.

• t = 1 (forests) \longrightarrow **Done!**

Definition. The tree-width of a graph G is the minimum k such that G is the subgraph of a k-tree.

Thus, a graph with tree-width at most k is the subgraph of some k-tree.

Enumeration of graphs with tree-width at most t.

- t = 1 (forests) \longrightarrow **Done!**
- $t = 2 \longrightarrow Done!$ ([Bordisky, Giménez, Kang, Noy '07])

Definition. The tree-width of a graph G is the minimum k such that G is the subgraph of a k-tree.

Thus, a graph with tree-width at most k is the subgraph of some k-tree.

Enumeration of graphs with tree-width at most t.

- t = 1 (forests) \longrightarrow **Done!**
- $t = 2 \longrightarrow Done!$ ([Bordisky, Giménez, Kang, Noy '07])
- $t \ge 3 \longrightarrow$ Open problem

Definition. The tree-width of a graph G is the minimum k such that G is the subgraph of a k-tree.

Thus, a graph with tree-width at most k is the subgraph of some k-tree.

Enumeration of graphs with tree-width at most t.

- t = 1 (forests) \longrightarrow **Done!**
- $t = 2 \longrightarrow Done!$ ([Bordisky, Giménez, Kang, Noy '07])
- $t \ge 3 \longrightarrow$ Open problem

Let $g_{n,t}$ be the number of labelled graphs with n vertices and tree-width at most t. Then, $\left(\frac{2^t t n}{\log t}\right)^n \leq g_{n,t} \leq (2^t t n)^n$.

[Baste, Noy, Sau '18]

Definition. A graph is **chordal** if it has no induced cycle of length greater than 3.

Definition. A graph is **chordal** if it has no induced cycle of length greater than 3.

Definition. A graph is **chordal** if it has no induced cycle of length greater than 3.

Definition. A graph is **chordal** if it has no induced cycle of length greater than 3.

Theorem. ([Dirac '61])

A graph is chordal iff every minimal separator is a clique.

Main results

Let $\mathcal{G}_{t,k,n}$ be the set of k-connected chordal graphs with n labelled vertices and tree-width at most t. Then, for fixed $t \geq 1$ and $0 \leq k \leq t$:

Theorem 1. ([C., Drmota, Noy, Réquilé '22])

There exist constants $c_{t,k} > 0$ and $\gamma_{t,k} \in (0,1)$ such that

$$|\mathcal{G}_{t,k,n}| \sim c_{t,k} \cdot n^{-5/2} \cdot \gamma_{t,k}^n \cdot n!, \quad \text{as } n \to \infty.$$

Main results

Let $\mathcal{G}_{t,k,n}$ be the set of k-connected chordal graphs with n labelled vertices and tree-width at most t. Then, for fixed $t \geq 1$ and $0 \leq k \leq t$:

Theorem 1. ([C., Drmota, Noy, Réquilé '22])

There exist constants $c_{t,k} > 0$ and $\gamma_{t,k} \in (0,1)$ such that

$$|\mathcal{G}_{t,k,n}| \sim c_{t,k} \cdot n^{-5/2} \cdot \gamma_{t,k}^n \cdot n!, \quad \text{as } n \to \infty.$$

For $i \in [t]$, let X_i be the number of i-cliques in a uniform random graph in $\mathcal{G}_{t,k,n}$.

Theorem 2. ([C., Drmota, Noy, Réquilé '22])

There exist constants $\alpha, \gamma \in (0,1)$ such that

$$\frac{|X_i - \mathbb{E}X_i|}{\sqrt{\mathbb{V}X_i}} \stackrel{d}{\to} N(0,1), \quad \text{with} \quad \mathbb{E}X_i \sim \alpha n \quad \text{and} \quad \mathbb{V}X_i \sim \sigma n.$$

Definition. The **connected components** (or 1-connected components) of a graph are its connected maximal subgraphs.

Definition. The **connected components** (or 1-connected components) of a graph are its connected maximal subgraphs.

Let \mathcal{G} be a class of labelled graphs and let $\mathcal{C} \subset \mathcal{G}$ be the class of its connected members. Then, their exponential generating functions satisfy

$$G(x) = \exp(C(x)),$$

provided that \mathcal{G} is closed under disjoint unions and taking connected components.

Definition. The **2-connected components** (or blocks) of a connected graph are its maximal 2-connected subgraphs.

Definition. The **2-connected components** (or blocks) of a connected graph are its maximal 2-connected subgraphs.

Definition. The **2-connected components** (or blocks) of a connected graph are its maximal 2-connected subgraphs.

Let $\mathcal{B} \subset \mathcal{C}$ be the class of the 2-connected members of \mathcal{G} . Then,

$$C^{\bullet}(x) = x \exp(B'(C^{\bullet}(x))), \text{ where } C^{\bullet}(x) = xC'(x),$$

provided that G is **block-stable**, i.e., that a graph belongs to C iff its blocks belong to B.

Let $\mathcal{B} \subset \mathcal{C}$ be the class of the 2-connected members of \mathcal{G} . Then,

$$C^{\bullet}(x) = x \exp(B'(C^{\bullet}(x))), \text{ where } C^{\bullet}(x) = xC'(x),$$

provided that G is **block-stable**, i.e., that a graph belongs to C iff its blocks belong to B.

7/15

Let $\mathcal{B} \subset \mathcal{C}$ be the class of the 2-connected members of \mathcal{G} . Then,

$$C^{\bullet}(x) = x \exp(B'(C^{\bullet}(x))), \text{ where } C^{\bullet}(x) = xC'(x),$$

provided that G is **block-stable**, i.e., that a graph belongs to C iff its blocks belong to B.

Let $\mathcal{B} \subset \mathcal{C}$ be the class of the 2-connected members of \mathcal{G} . Then,

$$C^{\bullet}(x) = x \exp(B'(C^{\bullet}(x))), \text{ where } C^{\bullet}(x) = xC'(x),$$

provided that G is **block-stable**, i.e., that a graph belongs to C iff its blocks belong to B.

The 3-connected components of a 2-connected graph can also be defined, but the details are a little more involved.

There is also a relation between their generating functions.

The 3-connected components of a 2-connected graph can also be defined, but the details are a little more involved.

There is also a relation between their generating functions.

Unfortunately, the 4-connected components of 3-connected graphs cannot be defined in general (in such a way that the decomposition is unambiguous and well-defined).

The 3-connected components of a 2-connected graph can also be defined, but the details are a little more involved.

There is also a relation between their generating functions.

Unfortunately, the 4-connected components of 3-connected graphs cannot be defined in general (in such a way that the decomposition is unambiguous and well-defined).

However, any k-connected **chordal** graph admits a decomposition into (k+1)-connected components!

"Definition". Slicing through a k-separator:

"Definition". Slicing through a k-separator:

"Definition". Slicing through a k-separator:

"Definition". Slicing through a k-separator:

"Definition". The (k + 1)-connected components of a k-connected chordal graph are obtained by slicing it through all its k-separators (which are k-cliques).

"Definition". Slicing through a k-separator:

"Definition". The (k + 1)-connected components of a k-connected chordal graph are obtained by slicing it through all its k-separators (which are k-cliques).

Proposition. This is well defined (the order does not matter, no k-separators appear or disappear in the process).

"Definition". Slicing through a k-separator:

"Definition". The (k + 1)-connected components of a k-connected chordal graph are obtained by slicing it through all its k-separators (which are k-cliques).

Proposition. This is well defined (the order does not matter, no k-separators appear or disappear in the process).

 \rightarrow Note that the (k+1)-connected components are the maximal (k+1)-connected subgraphs.

Let $\mathcal{G}_k^{(i)}$ be the class of k-connected chordal graphs rooted at an unlabelled, ordered i-clique.

Consider its multivariate exponential generating function $G_k^{(j)}(x,x_k)$, where the variable x_k marks the number of k-cliques. Then, we have that

$$G_k^{(k)}(x, x_k) = \exp\left(G_{k+1}^{(k)}(x, x_k G_k^{(k)}(x, x_k))\right).$$

Let $\mathcal{G}_k^{(i)}$ be the class of k-connected chordal graphs rooted at an unlabelled, ordered i-clique.

Consider its multivariate exponential generating function $G_k^{(j)}(x,x_k)$, where the variable x_k marks the number of k-cliques. Then, we have that

$$G_k^{(k)}(x, x_k) = \exp\left(G_{k+1}^{(k)}(x, x_k G_k^{(k)}(x, x_k))\right).$$

This generalizes the classical decomposition of connected graphs into 2-connected components.

We start with the (t+1)-connected members: only K_{t+1} .

$$G_{t+1}(\mathbf{x}) = \frac{1}{(t+1)!} \prod_{j \in [t]} x_j^{\binom{t+1}{j}}.$$

We start with the (t+1)-connected members: only K_{t+1} .

$$G_{t+1}(\mathbf{x}) = \frac{1}{(t+1)!} \prod_{j \in [t]} x_j^{\binom{t+1}{j}}.$$

And we go down the stairs.
$$G_{t+1} \to G_{t+1}^{(t)} \downarrow \\ G_t^{(t)} \to G_t \to G_t^{(t-1)} \downarrow \\ \vdots \\ G_2^{(2)} \to G_2 \to G_2^{(1)} \\ \downarrow \\ G_1^{(1)} \to G_1$$

We start with the (t+1)-connected members: only K_{t+1} .

$$G_{t+1}(\mathbf{x}) = \frac{1}{(t+1)!} \prod_{j \in [t]} x_j^{\binom{t+1}{j}}.$$

We start with the (t+1)-connected members: only K_{t+1} .

$$G_{t+1}(\mathbf{x}) = \frac{1}{(t+1)!} \prod_{j \in [t]} x_j^{\binom{t+1}{j}}.$$

Finally,
$$G(x) = G_0(x) = \exp(G_1(x, 1, \dots, 1))$$
.

We start with the (t+1)-connected members: only K_{t+1} .

$$G_{t+1}(\mathbf{x}) = \frac{1}{(t+1)!} \prod_{j \in [t]} x_j^{\binom{t+1}{j}}.$$

Finally,
$$G(x) = G_0(x) = \exp(G_1(x, 1, ..., 1))$$
.

First principle. The location of a function's singularities dictates the exponential growth of its coefficients.

$$[x^n]F(x) \propto \rho^{-n}, \quad \text{if } \rho > 0.$$

First principle. The location of a function's singularities dictates the exponential growth of its coefficients.

$$[x^n]F(x) \propto \rho^{-n}, \quad \text{if } \rho > 0.$$

Second principle. The nature of a function's singularities determines the subexponential factor.

First principle. The location of a function's singularities dictates the exponential growth of its coefficients.

$$[x^n]F(x) \propto \rho^{-n}, \quad \text{if } \rho > 0.$$

Second principle. The nature of a function's singularities determines the subexponential factor.

Transfer theorem. ([Floajolet, Odlyzko '82])

Suppose that F(x) is analytic in a Δ -domain where it admits a singular expansion

$$F(x) = f_1(x) + f_2(x) \left(1 - \frac{x}{x_0}\right)^{-\alpha}$$
.

for analytic functions f_1, f_2 with $f_2(x_0) \neq 0$. Then, as $n \to \infty$,

$$[x^n]F(x) \sim f_2(x_0) \frac{n^{\alpha-1}}{\Gamma(\alpha)} x_0^{-n}.$$

First principle. The location of a function's singularities dictates the exponential growth of its coefficients.

$$[x^n]F(x) \propto \rho^{-n}, \quad \text{if } \rho > 0.$$

Second principle. The nature of a function's singularities determines the subexponential factor.

Transfer theorem. ([Floajolet, Odlyzko '82])

Suppose that F(x) is analytic in a Δ -domain where it admits a singular expansion

$$F(x) = f_1(x) + f_2(x) \left(1 - \frac{x}{x_0}\right)^{-\alpha}$$
.

for analytic functions f_1, f_2 with $f_2(x_0) \neq 0$. Then, as $n \to \infty$,

$$[x^n]F(x) \sim f_2(x_0) \frac{n^{\alpha-1}}{\Gamma(\alpha)} x_0^{-n}.$$

In our case, $\alpha = -3/2$.

Analysis of the system
$$G_{t+1} o G_{t+1}^{(t)}$$
 \downarrow $G_t^{(t)} o G_t o G_t^{(t-1)}$ \downarrow $G_{t-1}^{(t-1)}$ \downarrow \vdots \downarrow $G_2^{(2)} o G_2 o G_2^{(1)}$ \downarrow $G_1^{(1)} o G_1$

$$G_{t+1} o G_{t+1}^{(t)}$$
 3/2 singularity $G_t^{(t)} o G_t o G_t^{(t-1)}$ 1/2 $G_t^{(t-1)} o 1/2$ $G_t^{(t-1)} o G_t^{(t-1)} o G_t^{(t$

$$G_{t+1} \rightarrow G_{t+1}^{(t)} \qquad 3/2 \text{ singularity}$$

$$G_t^{(t)} \rightarrow G_t \rightarrow G_t^{(t-1)} \longrightarrow 1/2$$

$$G_{t-1}^{(t-1)} \longrightarrow 1/2$$

$$\vdots$$

$$1/2 \longrightarrow G_2^{(2)} \rightarrow G_2 \rightarrow G_2^{(1)}$$

$$G_1^{(1)} \rightarrow G_1$$

$$G_{t+1}
ightarrow G_{t+1}^{(t)}$$
 $3/2$ singularity $G_t^{(t)}
ightarrow G_t
ightarrow G_t^{(t-1)}$ $-1/2$ $G_{t-1}^{(t-1)}$ $-1/2$ $G_{t-1}^{$

$$G_{t+1} \rightarrow G_{t+1}^{(t)} \qquad 3/2 \text{ singularity}$$

$$G_t^{(t)} \rightarrow G_t \rightarrow G_t^{(t-1)} \longrightarrow 1/2$$

$$G_{t-1}^{(t-1)} \longrightarrow 1/2$$

$$\downarrow \qquad \qquad \downarrow$$

$$G_{t-1}^{(t-1)} \longrightarrow 1/2$$

$$\downarrow \qquad \qquad \downarrow$$

$$1/2 \longrightarrow G_2^{(2)} \rightarrow G_2 \rightarrow G_2^{(1)} \longrightarrow 1/2$$

$$\downarrow \qquad \qquad \downarrow$$

$$1/2 \longrightarrow G_1^{(1)} \rightarrow G_1$$

Lemma 1. We have singular expansions of the same type in any variable.

- **Lemma 1.** We have singular expansions of the same type in any variable.
- **Lemma 2.** Derivating a 3/2-singularity yields a 1/2-singularity and integrating a 1/2-singularity yields a 3/2-singularity.

- **Lemma 1.** We have singular expansions of the same type in any variable.
- **Lemma 2.** Derivating a 3/2-singularity yields a 1/2-singularity and integrating a 1/2-singularity yields a 3/2-singularity.
- **Lemma 3.** The solution to the implicit equation has a 1/2-singularity.

Theorem 2 follows from these singular expansions by an application of the so-called Quasi Power Theorem.

Theorem 2 follows from these singular expansions by an application of the so-called Quasi Power Theorem.

Some values of the singularities $\rho_{t,k}$

Theorem 2 follows from these singular expansions by an application of the so-called Quasi Power Theorem.

Some values of the singularities $\rho_{t,k}$

Theorem. ([Bender, Richmond, Wormald '85])

Almost all chordal graphs are split.

Therefore, the number of chordal graphs grows like $2^{n^2/4}$ and $\rho_t \to 0$ as $t \to \infty$.

Open questions

1. At what rate does ρ_t go to 0?

Open questions

1. At what rate does ρ_t go to 0?

2. What happens if we let t = t(n) grow with n?

If $t = (1 + \varepsilon) \log n$, then the class is large.

Consider split graphs with a clique of size t. There are $2^{(1+\varepsilon)\log n(n-(1+\varepsilon)\log n)}$ such graphs. This number grows faster that $c^n n!$ for any c.

At which point between t = O(1) and $t = \log n$ the class ceases to be small?