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k-trees
Definition. A k-tree is a graph obtained from a (k + 1)-clique by
successively adding a new vertex connected to all vertices of an existing
k-clique.

• 2-trees

• 1-trees are trees

Theorem ([Beineke, Pippert, ’69])
The number of labelled k-trees with n vertices is

(
n
k

)
(kn− k2 + 1)n−k−2.
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Tree-width
Definition. The tree-width of a graph G is the minimum k such that G
is the subgraph of a k-tree.

Thus, a graph with tree-width at most k is the subgraph of some k-tree.

Enumeration of graphs with tree-width at most t.
• t = 1 (forests) −→ Done!
• t = 2 −→ Done! ([Bordisky, Giménez, Kang, Noy ’07])
• t ≥ 3 −→ Open problem

Let gn,t be the number of labelled graphs with n vertices and tree-width

at most t. Then,
(

2ttn
log t

)n

≤ gn,t ≤ (2ttn)n.

[Baste, Noy, Sau ’18]
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Chordal graphs
Definition. A graph is chordal if it has no induced cycle of lengh greater
than 3.

Not chordal Chordal

Theorem. ([Dirac ’61])
A graph is chordal iff every minimal separator is a clique.
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vertices and tree-width at most t. Then, for fixed t ≥ 1 and 0 ≤ k ≤ t:

Theorem 1. ([C., Drmota, Noy, Réquilé ’22])
There exist constants ct,k > 0 and γt,k ∈ (0, 1) such that

|Gt,k,n| ∼ ct,k · n−5/2 · γn
t,k · n!, as n → ∞.
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Main results
Let Gt,k,n be the set of k-connected chordal graphs with n labelled
vertices and tree-width at most t. Then, for fixed t ≥ 1 and 0 ≤ k ≤ t:

Theorem 1. ([C., Drmota, Noy, Réquilé ’22])
There exist constants ct,k > 0 and γt,k ∈ (0, 1) such that

|Gt,k,n| ∼ ct,k · n−5/2 · γn
t,k · n!, as n → ∞.

For i ∈ [t], let Xi be the number of i-cliques in a uniform random graph
in Gt,k,n.

Theorem 2. ([C., Drmota, Noy, Réquilé ’22])
There exist constants α, γ ∈ (0, 1) such that

|Xi − EXi|√
VXi

d→ N(0, 1), with EXi ∼ αn and VXi ∼ σn.
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Decomposition of graphs
into k-connected components

Definition. The connected components (or 1-connected components)
of a graph are its connected maximal subgraphs.

Let G be a class of labelled graphs and let C ⊂ G be the class of its
connected members. Then, their exponential generating functions satisfy

G(x) = exp(C(x)),

provided that G is closed under disjoint unions and taking connected
components.
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Decomposition of graphs
into k-connected components

The 3-connected components of a 2-connected graph can also be defined,
but the details are a little more involved.
There is also a relation between their generating functions.

Unfortunately, the 4-connected components of 3-connected graphs
cannot be defined in general (in such a way that the decomposition is
unambiguous and well-defined).

However, any k-connected chordal graph admits a decomposition into
(k + 1)-connected components!
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Decomposition of chordal graphs
into k-connected components

“Definition”. Slicing through a k-separator:

“Definition”. The (k + 1)-connected components of a k-connected
chordal graph are obtained by slicing it through all its k-separators
(which are k-cliques).

Proposition. This is well defined (the order does not matter, no
k-separators appear or disappear in the process).

→ Note that the (k + 1)-connected components are the maximal
(k + 1)-connected subgraphs.
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Kk

Kk

Let G(i)
k be the class of k-connected chordal graphs rooted at an

unlabelled, ordered i-clique.

Consider its multivariate exponential generating function G
(j)
k (x, xk),

where the variable xk marks the number of k-cliques. Then, we have that

G
(k)
k (x, xk) = exp

(
G

(k)
k+1(x, xkG

(k)
k (x, xk))

)
.

(k + 1)-connected
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Decomposition of chordal graphs
into k-connected components

Kk

Kk

Let G(i)
k be the class of k-connected chordal graphs rooted at an

unlabelled, ordered i-clique.

Consider its multivariate exponential generating function G
(j)
k (x, xk),

where the variable xk marks the number of k-cliques. Then, we have that

G
(k)
k (x, xk) = exp

(
G

(k)
k+1(x, xkG

(k)
k (x, xk))

)
.

(k + 1)-connected

(k + 1)-connected

k-connected

This generalizes the classical decomposition of connected graphs into
2-connected components.
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We start with the (t+ 1)-connected members: only Kt+1.

Gt+1(x) =
1

(t+ 1)!

∏
j∈[t]

x
(t+1

j )
j .

And we go down the stairs.

Gt+1 → G
(t)
t+1

↓
G

(t)
t → Gt → G

(t−1)
t

↓
...
↓

G
(2)
2 → G2 → G

(1)
2

↓
G

(1)
1 → G1

t-trees

Finally, G(x) = G0(x) = exp(G1(x, 1, . . . , 1)).

[Wormald ’85]
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exponential growth of its coefficients.

[xn]F (x) ∝ ρ−n, if ρ > 0.

Second principle. The nature of a function’s singularities determines
the subexponential factor.

Transfer theorem. ([Floajolet, Odlyzko ’82])
Suppose that F (x) is analytic in a ∆-domain where it admits a singular
expansion

F (x) = f1(x) + f2(x)

(
1− x

x0

)−α

.

for analytic functions f1, f2 with f2(x0) ̸= 0. Then, as n → ∞,

[xn]F (x) ∼ f2(x0)
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Analytic combinatorics
First principle. The location of a function’s singularities dictates the
exponential growth of its coefficients.

[xn]F (x) ∝ ρ−n, if ρ > 0.

Second principle. The nature of a function’s singularities determines
the subexponential factor.

Transfer theorem. ([Floajolet, Odlyzko ’82])
Suppose that F (x) is analytic in a ∆-domain where it admits a singular
expansion

F (x) = f1(x) + f2(x)

(
1− x

x0

)−α

.

for analytic functions f1, f2 with f2(x0) ̸= 0. Then, as n → ∞,

[xn]F (x) ∼ f2(x0)
nα−1

Γ(α)
x−n
0 .

In our case, α = −3/2.
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(t)
t+1

↓
G
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t → Gt → G

(t−1)
t

↓
G

(t−1)
t−1

↓
...
↓

G
(2)
2 → G2 → G

(1)
2

↓
G

(1)
1 → G1

3/2 singularity

1/2

1/2

1/2 1/2

3/2

1/2 3/2

Lemma 1. We have singular expansions of the same type in any variable.

Lemma 2. Derivating a 3/2-singularity yields a 1/2-singularity and
integrating a 1/2-singularity yields a 3/2-singularity.

Lemma 3. The solution to the implicit equation has a 1/2-singularity.
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t = 2 0.14665 0.18394
t = 3 0.07703 0.08421 0.12263
t = 4 0.04444 0.04662 0.05664 0.09197
t = 5 0.02657 0.02732 0.03092 0.04152 0.07358
t = 6 0.01608 0.01635 0.01773 0.02184 0.03214 0.06131
t = 7 0.00974 0.00984 0.01038 0.01204 0.01614 0.02583 0.05255

Some values of the singularities ρt,k

Theorem. ([Bender, Richmond, Wormald ’85])
Almost all chordal graphs are split.

Therefore, the number of chordal graphs grows like 2n
2/4 and ρt → 0 as

t → ∞.
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Open questions
1. At what rate does ρt go to 0?

c1
1

t2t
< ρt < c2

1

t
.

t-treestw at most t
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t
.

t-treestw at most t

2. What happens if we let t = t(n) grow with n?

If t = (1 + ε) log n, then the class is large.

Consider split graphs with a clique of size t. There are
2(1+ε) logn(n−(1+ε) logn) such graphs. This number grows faster that cnn!
for any c.

At which point between t = O(1) and t = log n the class ceases to be
small?
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