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k-trees

Definition. A is a graph obtained from a (k + 1)-clique by
successively adding a new vertex connected to all vertices of an existing
k-clique.

e l-trees are trees

"\

e 2-trees

Theorem ([Beineke, Pippert, '69])
The number of labelled k-trees with n vertices is (7)) (kn — k? + 1)" 52,
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Tree-width

Definition. The of a graph GG is the minimum k such that G
Is the subgraph of a k-tree.

Thus, a graph with k is the subgraph of some k-tree.

Enumeration of graphs with tree-width at most t.
e t =1 (forests) — Done!
e t =2 — Done! ([Bordisky, Giménez, Kang, Noy '07])
e {t >3 — Open problem

Let g, + be the number of labelled graphs with n vertices and tree-width

n
at most ¢. Then, (%) < gnt < (2%n)".

[Baste, Noy, Sau '18] 2/15
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Chordal graphs

Definition. A graph is iIf it has no induced cycle of lengh greater
than 3.

Not chordal Chordal

Theorem. ([Dirac '61])
A graph is chordal iff every minimal separator is a clique.
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Main results

Let G r.n be the set of k-connected chordal graphs with n labelled
vertices and tree-width at most ¢. Then, for fixed ¢t > 1 and 0 < k < ¢:

Theorem 1. ([C., Drmota, Noy, Réquilé '22])
There exist constants ¢; j, > 0 and v € (0,1) such that

_5/2-’ygk-n!, as n — o0.
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~ Ct kT
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Theorem 1. ([C., Drmota, Noy, Réquilé '22])
There exist constants ¢; j, > 0 and v € (0,1) such that

_5/2-72k-n!, as n — o0.

‘gt,k,n

~ Ct kT

For i € [t], let X; be the number of i-cliques in a uniform random graph
In gt7k,n.

Theorem 2. ([C., Drmota, Noy, Réquilé '22])
There exist constants «, v € (0,1) such that

X; —EX; _
| Nape ‘ 4 N(0,1), with EX; ~an and VX; ~ on.
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Decomposition of graphs
Into k-connected components

Definition. The connected components (or 1-connected components)
of a graph are its connected maximal subgraphs.
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Decomposition of graphs
Into k-connected components

Definition. The (or 1-connected components)
of a graph are its connected maximal subgraphs.

Let G be a class of labelled graphs and let C C G be the class of its
connected members. Then, their exponential generating functions satisfy

G(z) = exp(C(2)),

provided that G is closed under disjoint unions and taking connected
components.
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Into k-connected components

The 3-connected components of a 2-connected graph can also be defined,
but the details are a little more involved.
There is also a relation between their generating functions.

Unfortunately, the 4-connected components of 3-connected graphs
cannot be defined in general (in such a way that the decomposition is
unambiguous and well-defined).

However, any k-connected chordal graph admits a decomposition into
(k 4 1)-connected components!
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“Definition”. through a k-separator:

(OO
O OO

“Definition”. The of a k-connected

chordal graph are obtained by slicing it through all its k-separators
(which are k-cliques).

Proposition. This is well defined (the order does not matter, no
k-separators appear or disappear in the process).

— Note that the (k£ 4 1)-connected components are the maximal
(k + 1)-connected subgraphs.
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Decomposition of chordal graphs
Into k-connected components

(k + 1)-connected
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® @

10/15



Decomposition of chordal graphs
Into k-connected components

(k + 1)c@

(k + 1)-connected

10/15



Decomposition of chordal graphs
Into k-connected components

k+ 1)c@

k-connected

10/15



Decomposition of chordal graphs
Into k-connected components

@ onnecte

Let Q,(f) be the class of k-connected chordal graphs rooted at an
unlabelled, ordered i-clique.

Consider its multivariate exponential generating function G,gj>(x,xk),
where the variable x;. marks the number of k-cliques. Then, we have that

k-connected

G,gk) (x, ) = exp (G,(ﬁgl(x, kagC)(:v,xk))) .
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@ onnecte

Let Q,(f) be the class of k-connected chordal graphs rooted at an
unlabelled, ordered i-clique.

Consider its multivariate exponential generating function G,gj)(x,xk),
where the variable x;. marks the number of k-cliques. Then, we have that

k-connected

G,gk) (x, ) = exp (G,(ﬁl(x, :Iszgc)(x,xk))) .

This generalizes the classical decomposition of connected graphs into
2-connected components. 10/15
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of its coefficients.

™| F(x) o< p™ ™, if p> 0.

Second principle. The of a function’s singularities determines
the

Transfer theorem. ([Floajolet, Odlyzko '82])
Suppose that F(x) is analytic in a A-domain where it admits a singular

expansion

Po)= fie) + 1) (1-2)

Lo
for analytic functions f1, fo with fo(xzg) # 0. Then, as n — oo,

na—l

['(«)

—MN
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Analytic combinatorics

First principle. The of a function’s singularities dictates the
of its coefficients.

™| F(x) o< p™ ™, if p> 0.

Second principle. The of a function’s singularities determines
the

Transfer theorem. ([Floajolet, Odlyzko '82])
Suppose that F(x) is analytic in a A-domain where it admits a singular

expansion

Po)= fie) + 1) (1-2)

Lo
for analytic functions f1, fo with fo(xzg) # 0. Then, as n — oo,

na—l

['(«)

—MN
L

2" F(x) ~ fa(z0)

In our case, a = —3/2. 12/15
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Gtt) — G = GV e 12
!
G a— 1/2
!
s 3/2
) ¥
12— G¥ = Gy, —» G «— 1/2
!

12— GV &5 G <«— 3/2

Lemma 1. We have singular expansions of the same type in any variable.

Lemma 2. Derivating a 3/2-singularity yields a 1/2-singularity and
integrating a 1/2-singularity yields a 3/2-singularity.

Lemma 3. The solution to the implicit equation has a 1/2-singularity.
13/15
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Theorem 2 follows from these singular expansions by an application of
the so-called Quasi Power Theorem.
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Some values of the singularities p; j
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Theorem 2 follows from these singular expansions by an application of
the so-called Quasi Power Theorem.

Some values of the singularities p; j

k=1 k=2 k=3 k=4 k=5 k=06 k=7
t =1]0.36788

t =210.14665 0.18394

t =310.07703 0.08421 0.12263

t =410.04444 0.04662 0.05664 0.09197

t =9510.02657 0.02732 0.03092 0.04152 0.07358

t =610.01608 0.01635 0.01773 0.02184 0.03214 0.06131

t =710.00974 0.00984 0.01038 0.01204 0.01614 0.02583 0.05255

Theorem. ([Bender, Richmond, Wormald '85])
Almost all chordal graphs are split.

Therefore, the number of chordal graphs grows like 27" /4 and pr — 0 as
t — 00.
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Open questions

1. At what rate does p; go to 07

1 1
Cl— < P < CQZ.

/ 21 \

tw at most ¢ t-trees

2. What happens if we let t = t(n) grow with n?
If t = (1 4+ ¢)logn, then the class is large.

Consider split graphs with a clique of size t. There are
9(1+e)logn(n—(1+e)logn) g\ ch graphs. This number grows faster that ¢"n!

for any c.

At which point between t = O(1) and t = logn the class ceases to be
small?

15/15



	Chordal graphs

