Chordal graphs with bounded tree-width

Jordi Castellví (UPC)

Work in collaboration with Michael Drmota, Marc Noy and Clément Requilé

EUROCOMB 2023 - Prague

Definition. A *k*-tree is a graph obtained from a (k + 1)-clique by successively adding a new vertex connected to all vertices of an existing *k*-clique.

Definition. A *k*-tree is a graph obtained from a (k + 1)-clique by successively adding a new vertex connected to all vertices of an existing *k*-clique.

Definition. A *k*-tree is a graph obtained from a (k + 1)-clique by successively adding a new vertex connected to all vertices of an existing *k*-clique.

Definition. A *k*-tree is a graph obtained from a (k + 1)-clique by successively adding a new vertex connected to all vertices of an existing *k*-clique.

Definition. A k-tree is a graph obtained from a (k + 1)-clique by successively adding a new vertex connected to all vertices of an existing k-clique.

Definition. A k-tree is a graph obtained from a (k + 1)-clique by successively adding a new vertex connected to all vertices of an existing k-clique.

Definition. A *k*-tree is a graph obtained from a (k + 1)-clique by successively adding a new vertex connected to all vertices of an existing *k*-clique.

Definition. A k-tree is a graph obtained from a (k + 1)-clique by successively adding a new vertex connected to all vertices of an existing k-clique.

Definition. A k-tree is a graph obtained from a (k + 1)-clique by successively adding a new vertex connected to all vertices of an existing k-clique.

• 1-trees are trees

Definition. A *k*-tree is a graph obtained from a (k + 1)-clique by successively adding a new vertex connected to all vertices of an existing *k*-clique.

• 1-trees are trees

Definition. A *k*-tree is a graph obtained from a (k + 1)-clique by successively adding a new vertex connected to all vertices of an existing *k*-clique.

Definition. A *k*-tree is a graph obtained from a (k + 1)-clique by successively adding a new vertex connected to all vertices of an existing *k*-clique.

Definition. A *k*-tree is a graph obtained from a (k + 1)-clique by successively adding a new vertex connected to all vertices of an existing *k*-clique.

• 1-trees are trees

Definition. A *k*-tree is a graph obtained from a (k + 1)-clique by successively adding a new vertex connected to all vertices of an existing *k*-clique.

• 1-trees are trees

Definition. A *k*-tree is a graph obtained from a (k + 1)-clique by successively adding a new vertex connected to all vertices of an existing *k*-clique.

• 1-trees are trees

Definition. A *k*-tree is a graph obtained from a (k + 1)-clique by successively adding a new vertex connected to all vertices of an existing *k*-clique.

• 1-trees are trees

Definition. A *k*-tree is a graph obtained from a (k + 1)-clique by successively adding a new vertex connected to all vertices of an existing *k*-clique.

• 1-trees are trees

Theorem ([Beineke, Pippert, '69])

The number of labelled k-trees with n vertices is $\binom{n}{k}(kn-k^2+1)^{n-k-2}$.

Definition. The tree-width of a graph G is the minimum k such that G is the subgraph of a k-tree.

Definition. The tree-width of a graph G is the minimum k such that G is the subgraph of a k-tree.

Definition. The tree-width of a graph G is the minimum k such that G is the subgraph of a k-tree.

Definition. The tree-width of a graph G is the minimum k such that G is the subgraph of a k-tree.

Definition. The tree-width of a graph G is the minimum k such that G is the subgraph of a k-tree.

Thus, a graph with tree-width at most k is the subgraph of some k-tree.

Enumeration of graphs with tree-width at most t.

• t = 1 (forests) \longrightarrow **Done!**

Definition. The tree-width of a graph G is the minimum k such that G is the subgraph of a k-tree.

Thus, a graph with tree-width at most k is the subgraph of some k-tree.

Enumeration of graphs with tree-width at most t.

- t = 1 (forests) \longrightarrow **Done!**
- $t = 2 \longrightarrow \text{Done!}$ ([Bodirsky, Giménez, Kang, Noy '07])

Definition. The tree-width of a graph G is the minimum k such that G is the subgraph of a k-tree.

Thus, a graph with tree-width at most k is the subgraph of some k-tree.

Enumeration of graphs with tree-width at most t.

- t = 1 (forests) \longrightarrow **Done!**
- $t = 2 \longrightarrow \text{Done!}$ ([Bodirsky, Giménez, Kang, Noy '07])
- $t \ge 3 \longrightarrow$ Open problem

Definition. The tree-width of a graph G is the minimum k such that G is the subgraph of a k-tree.

Thus, a graph with tree-width at most k is the subgraph of some k-tree.

Enumeration of graphs with tree-width at most t.

- t = 1 (forests) \longrightarrow **Done!**
- $t = 2 \longrightarrow \text{Done!}$ ([Bodirsky, Giménez, Kang, Noy '07])
- $t \ge 3 \longrightarrow$ Open problem

Let $g_{n,t}$ be the number of labelled graphs with n vertices and tree-width at most t. Then, $\left(\frac{2^t tn}{\log t}\right)^n \leq g_{n,t} \leq (2^t tn)^n$. [Baste, Noy, Sau '18]

Definition. A graph is chordal if it has no induced cycle of lengh greater than 3.

Definition. A graph is chordal if it has no induced cycle of lengh greater than 3.

Definition. A graph is chordal if it has no induced cycle of lengh greater than 3.

Definition. A graph is chordal if it has no induced cycle of lengh greater than 3.

Theorem. ([Dirac '61]) A graph is chordal iff every minimal separator is a clique.

Main results

Let $\mathcal{G}_{t,k,n}$ be the set of k-connected chordal graphs with n labelled vertices and tree-width at most t. Then, for fixed $t \ge 1$ and $0 \le k \le t$:

Theorem 1. ([C., Drmota, Noy, Réquilé '22]) There exist constants $c_{t,k} > 0$ and $\gamma_{t,k} \in (0,1)$ such that

$$|\mathcal{G}_{t,k,n}| \sim c_{t,k} \cdot n^{-5/2} \cdot \gamma_{t,k}^n \cdot n!, \quad \text{as } n \to \infty.$$

Main results

Let $\mathcal{G}_{t,k,n}$ be the set of k-connected chordal graphs with n labelled vertices and tree-width at most t. Then, for fixed $t \ge 1$ and $0 \le k \le t$:

Theorem 1. ([C., Drmota, Noy, Réquilé '22]) There exist constants $c_{t,k} > 0$ and $\gamma_{t,k} \in (0,1)$ such that

$$|\mathcal{G}_{t,k,n}| \sim c_{t,k} \cdot n^{-5/2} \cdot \gamma_{t,k}^n \cdot n!, \quad \text{as } n \to \infty.$$

For $i \in [t]$, let X_i be the number of *i*-cliques in a uniform random graph in $\mathcal{G}_{t,k,n}$.

Theorem 2. ([C., Drmota, Noy, Réquilé '22]) There exist constants $\alpha, \gamma \in (0, 1)$ such that

$$\frac{|X_i - \mathbb{E}X_i|}{\sqrt{\mathbb{V}X_i}} \xrightarrow{d} N(0, 1), \quad \text{with} \quad \mathbb{E}X_i \sim \alpha n \quad \text{and} \quad \mathbb{V}X_i \sim \sigma n.$$

Definition. The **connected components** (or 1-connected components) of a graph are its connected maximal subgraphs.

Definition. The **connected components** (or 1-connected components) of a graph are its connected maximal subgraphs.

Let \mathcal{G} be a class of labelled graphs and let $\mathcal{C} \subset \mathcal{G}$ be the class of its connected members. Then, their exponential generating functions satisfy

 $G(x) = \exp(C(x)),$

provided that \mathcal{G} is closed under disjoint unions and taking connected components.

Definition. The **2-connected components** (or blocks) of a connected graph are its maximal 2-connected subgraphs.

Definition. The **2-connected components** (or blocks) of a connected graph are its maximal 2-connected subgraphs.

Definition. The **2-connected components** (or blocks) of a connected graph are its maximal 2-connected subgraphs.

Let $\mathcal{B} \subset \mathcal{C}$ be the class of the 2-connected members of $\mathcal{G}.$ Then,

$$C^{\bullet}(x) = x \exp(B'(C^{\bullet}(x))), \quad \text{where } C^{\bullet}(x) = xC'(x),$$

Let $\mathcal{B} \subset \mathcal{C}$ be the class of the 2-connected members of \mathcal{G} . Then,

$$C^{\bullet}(x) = x \exp(B'(C^{\bullet}(x))), \quad \text{where } C^{\bullet}(x) = xC'(x),$$

Let $\mathcal{B} \subset \mathcal{C}$ be the class of the 2-connected members of $\mathcal{G}.$ Then,

$$C^{\bullet}(x) = x \exp(B'(C^{\bullet}(x))), \quad \text{where } C^{\bullet}(x) = xC'(x),$$

Let $\mathcal{B} \subset \mathcal{C}$ be the class of the 2-connected members of \mathcal{G} . Then,

$$C^{\bullet}(x) = x \exp(B'(C^{\bullet}(x))), \quad \text{where } C^{\bullet}(x) = xC'(x),$$

The 3-connected components of a 2-connected graph can also be defined, but the details are a little more involved.

There is also a relation between their generating functions.

The 3-connected components of a 2-connected graph can also be defined, but the details are a little more involved. There is also a relation between their generating functions.

Unfortunately, the 4-connected components of 3-connected graphs cannot be defined in general (in such a way that the decomposition is unambiguous and well-defined).

The 3-connected components of a 2-connected graph can also be defined, but the details are a little more involved. There is also a relation between their generating functions.

Unfortunately, the 4-connected components of 3-connected graphs cannot be defined in general (in such a way that the decomposition is unambiguous and well-defined).

However, any k-connected **chordal** graph admits a decomposition into (k+1)-connected components!

"**Definition**". Slicing through a k-separator:

"Definition". Slicing through a *k*-separator:

"Definition". Slicing through a *k*-separator:

"Definition". Slicing through a *k*-separator:

"Definition". The (k + 1)-connected components of a k-connected chordal graph are obtained by slicing it through all its k-separators (which are k-cliques).

"Definition". Slicing through a *k*-separator:

"Definition". The (k + 1)-connected components of a k-connected chordal graph are obtained by slicing it through all its k-separators (which are k-cliques).

Proposition. This is well defined (the order does not matter, no k-separators appear or disappear in the process).

"Definition". Slicing through a *k*-separator:

"Definition". The (k + 1)-connected components of a k-connected chordal graph are obtained by slicing it through all its k-separators (which are k-cliques).

Proposition. This is well defined (the order does not matter, no k-separators appear or disappear in the process).

 \rightarrow Note that the (k + 1)-connected components are the maximal (k + 1)-connected subgraphs.

Let $\mathcal{G}_k^{(i)}$ be the class of k-connected chordal graphs rooted at an unlabelled, ordered *i*-clique.

Consider its multivariate exponential generating function $G_k^{(j)}(x, x_k)$, where the variable x_k marks the number of k-cliques. Then, we have that

$$G_k^{(k)}(x, x_k) = \exp\left(G_{k+1}^{(k)}(x, x_k G_k^{(k)}(x, x_k))\right).$$

Let $\mathcal{G}_k^{(i)}$ be the class of k-connected chordal graphs rooted at an unlabelled, ordered *i*-clique.

Consider its multivariate exponential generating function $G_k^{(j)}(x, x_k)$, where the variable x_k marks the number of k-cliques. Then, we have that

$$G_k^{(k)}(x, x_k) = \exp\left(G_{k+1}^{(k)}(x, x_k G_k^{(k)}(x, x_k))\right).$$

This generalizes the classical decomposition of connected graphs into 2-connected components. 10/

We start with the (t + 1)-connected members: only K_{t+1} .

$$G_{t+1}(\mathbf{x}) = \frac{1}{(t+1)!} \prod_{j \in [t]} x_j^{\binom{t+1}{j}}.$$

We start with the (t+1)-connected members: only K_{t+1} .

$$G_{t+1}(\mathbf{x}) = \frac{1}{(t+1)!} \prod_{j \in [t]} x_j^{\binom{t+1}{j}}.$$

And we go down the stairs.

 $\stackrel{\mathbf{i}}{\underset{G_{2}^{(2)}}{\overset{\mathbf{i}}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}}{\overset{\mathbf{i}}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}}{\overset{\mathbf{i}}}{\overset{\mathbf{$

We start with the (t+1)-connected members: only K_{t+1} .

$$G_{t+1}(\mathbf{x}) = \frac{1}{(t+1)!} \prod_{j \in [t]} x_j^{\binom{t+1}{j}}.$$

And we go down the stairs.

We start with the (t+1)-connected members: only K_{t+1} .

$$G_{t+1}(\mathbf{x}) = \frac{1}{(t+1)!} \prod_{j \in [t]} x_j^{\binom{t+1}{j}}.$$

And we go down the stairs.

Finally, $G(x) = G_0(x) = \exp(G_1(x, 1, \dots, 1))$.

We start with the (t+1)-connected members: only K_{t+1} .

$$G_{t+1}(\mathbf{x}) = \frac{1}{(t+1)!} \prod_{j \in [t]} x_j^{\binom{t+1}{j}}.$$

And we go down the stairs.

Finally, $G(x) = G_0(x) = \exp(G_1(x, 1, \dots, 1))$.

First principle. The **location** of a function's singularities dictates the **exponential growth** of its coefficients.

$$[x^n]F(x) \propto \rho^{-n}, \quad \text{if } \rho > 0.$$

First principle. The **location** of a function's singularities dictates the **exponential growth** of its coefficients.

$$[x^n]F(x) \propto \rho^{-n}, \qquad \text{if } \rho > 0.$$

Second principle. The **nature** of a function's singularities determines the **subexponential factor**.

First principle. The **location** of a function's singularities dictates the **exponential growth** of its coefficients.

$$[x^n]F(x) \propto \rho^{-n}, \quad \text{if } \rho > 0.$$

Second principle. The **nature** of a function's singularities determines the **subexponential factor**.

Transfer theorem. ([Floajolet, Odlyzko '82])

Suppose that F(x) is analytic in a Δ -domain where it admits a singular expansion

$$F(x) = f_1(x) + f_2(x) \left(1 - \frac{x}{x_0}\right)^{-\alpha}$$

for analytic functions f_1, f_2 with $f_2(x_0) \neq 0$. Then, as $n \to \infty$,

$$[x^n]F(x) \sim f_2(x_0) \frac{n^{\alpha - 1}}{\Gamma(\alpha)} x_0^{-n}.$$

12/15

First principle. The **location** of a function's singularities dictates the **exponential growth** of its coefficients.

$$[x^n]F(x) \propto \rho^{-n}, \quad \text{if } \rho > 0.$$

Second principle. The **nature** of a function's singularities determines the **subexponential factor**.

Transfer theorem. ([Floajolet, Odlyzko '82])

Suppose that $F(\boldsymbol{x})$ is analytic in a $\Delta\text{-domain}$ where it admits a singular expansion

$$F(x) = f_1(x) + f_2(x) \left(1 - \frac{x}{x_0}\right)^{-\alpha}$$

for analytic functions f_1, f_2 with $f_2(x_0) \neq 0$. Then, as $n \to \infty$,

$$[x^n]F(x) \sim f_2(x_0)\frac{n^{\alpha-1}}{\Gamma(\alpha)}x_0^{-n}.$$
 In our case, $\alpha = -3/2.$

$\begin{array}{cccc} G_{t+1} \rightarrow & G_{t+1} \\ & \downarrow \\ & G_t^{(t)} \rightarrow & G_t \rightarrow & G_t^{(t-1)} \\ & & \downarrow \\ & & & \downarrow \\ & & & G_{t-1}^{(t-1)} \\ & & \downarrow \end{array}$ Analysis of the system

Analysis of the system $\begin{array}{cccc} G_{t+1} \rightarrow & G_{t+1}^{(t)} & 3/2 \text{ singularity} \\ \downarrow & & & \\ G_t^{(t)} \rightarrow & G_t \rightarrow & G_t^{(t-1)} \\ & & \downarrow \\ & & & \\ G_{t-1}^{(t-1)} \end{array}$

$G_{t+1} \rightarrow \begin{array}{c} G_{t+1}^{(t)} & 3/2 \text{ singularity} \\ \downarrow & & \\ G_t^{(t)} \rightarrow G_t \rightarrow G_t^{(t-1)} & 1/2 \\ & \downarrow \\ G_{t-1}^{(t-1)} \\ & & \\ \end{array}$ Analysis of the system $\stackrel{!}{\underset{G_2^{(2)}}{\stackrel{}{\rightarrow}}} \rightarrow G_2 \rightarrow \begin{array}{c} G_2^{(1)} \\ & \downarrow \\ & & \downarrow \\ G_1^{(1)} \rightarrow G_1 \end{array}$

Analysis of the system $\begin{array}{cccc} G_{t+1} \rightarrow & G_{t+1}^{(t)} & 3/2 \text{ singularity} \\ \downarrow & & & \\ G_t^{(t)} \rightarrow & G_t \rightarrow & G_t^{(t-1)} & 1/2 \\ & & \downarrow & \\ G_{t-1}^{(t-1)} & & 1/2 \end{array}$ $\stackrel{!}{\underset{G_2^{(2)}}{\downarrow}} \to G_2 \to G_2^{(1)}$ $\stackrel{\downarrow}{\underset{G_1^{(1)}}{\downarrow}} \to G_1$

Analysis of the system $\begin{array}{cccc} G_{t+1} \rightarrow & G_{t+1}^{(t)} & 3/2 \text{ singularity} \\ \downarrow & & & \\ G_t^{(t)} \rightarrow & G_t \rightarrow & G_t^{(t-1)} & 1/2 \\ & & \downarrow & \\ G_{t-1}^{(t-1)} & & 1/2 \end{array}$ $\begin{array}{cccc} & \vdots & & \\ & \downarrow & & \\ 1/2 \longrightarrow & G_2^{(2)} & \rightarrow & G_2 & \rightarrow & G_2^{(1)} & \\ & & \downarrow & & \\ & & G_1^{(1)} & \rightarrow & G_1 \end{array}$

Analysis of the system $\begin{array}{cccc} G_{t+1} \rightarrow & G_{t+1}^{(t)} & 3/2 \text{ singularity} \\ \downarrow & & & \\ G_t^{(t)} \rightarrow & G_t \rightarrow & G_t^{(t-1)} & 1/2 \\ & \downarrow & & \\ G_{t-1}^{(t-1)} & & 1/2 \end{array}$

Analysis of the system $\begin{array}{cccc} G_{t+1} \rightarrow & G_{t+1}^{(t)} & 3/2 \text{ singularity} \\ & \downarrow & & \\ & G_t^{(t)} \rightarrow & G_t \rightarrow & G_t^{(t-1)} & 1/2 \\ & \downarrow & & \\ &$ $1/2 \longrightarrow G_2^{(2)} \rightarrow G_2 \rightarrow G_2^{(1)} \longrightarrow G_1^{(1)}$

Analysis of the system $\begin{array}{cccc} G_{t+1} \rightarrow & G_{t+1}^{(t)} & 3/2 \text{ singularity} \\ \downarrow & & & \\ G_t^{(t)} \rightarrow & G_t \rightarrow & G_t^{(t-1)} & 1/2 \\ & \downarrow & \\ G_{t-1}^{(t-1)} & & 1/2 \end{array}$

Lemma 1. We have singular expansions of the same type in any variable.

Lemma 1. We have singular expansions of the same type in any variable. **Lemma 2.** Derivating a 3/2-singularity yields a 1/2-singularity and integrating a 1/2-singularity yields a 3/2-singularity.

Lemma 1. We have singular expansions of the same type in any variable. **Lemma 2.** Derivating a 3/2-singularity yields a 1/2-singularity and integrating a 1/2-singularity yields a 3/2-singularity.

Lemma 3. The solution to the implicit equation has a 1/2-singularity. 13/15

Analysis of the system

Theorem 2 follows from these singular expansions by an application of the so-called Quasi Power Theorem.

Analysis of the system

Theorem 2 follows from these singular expansions by an application of the so-called Quasi Power Theorem.

Some values of the singularities $\rho_{t,k}$

Analysis of the system

Theorem 2 follows from these singular expansions by an application of the so-called Quasi Power Theorem.

Some values of the singularities $\rho_{t,k}$

Theorem. ([Bender, Richmond, Wormald '85]) Almost all chordal graphs are split.

Therefore, the number of chordal graphs grows like $2^{n^2/4}$ and $\rho_t \to 0$ as $t \to \infty$.

Open questions

1. At what rate does ρ_t go to 0?

Open questions

1. At what rate does ρ_t go to 0?

2. What happens if we let t = t(n) grow with n?

If $t = (1 + \varepsilon) \log n$, then the class is large.

Consider split graphs with a clique of size t. There are $2^{(1+\varepsilon)\log n(n-(1+\varepsilon)\log n)}$ such graphs. This number grows faster that $c^n n!$ for any c.

At which point between t = O(1) and $t = \log n$ the class ceases to be small?