# Enumeration of unlabelled chordal graphs with bounded tree-width

Jordi Castellví (CRM)

Work in collaboration with Michael Drmota and Clément Requilé



VII Congreso de Jóvenes Investigadores de la RSME - Bilbo

How to build a tree?

#### How to build a tree?

#### How to build a tree?

#### How to build a tree?



#### How to build a tree?



#### How to build a tree?



#### How to build a tree?



#### How to build a tree?



#### How to build a tree?



#### How to build a tree?



















Iteratively add a new vertex connected to the vertices of an existing edge.



2-trees

















Iteratively add a new vertex connected to the vertices of an existing triangle.



**Definition.** A *k*-tree is a graph obtained from a (k + 1)-clique by successively adding a new vertex connected to all vertices of an existing *k*-clique.

Iteratively add a new vertex connected to the vertices of an existing clique (complete subgraph).

•














































Iteratively add a new vertex connected to the vertices of an existing clique (complete subgraph).



### **Chordal graphs**

Iteratively add a new vertex connected to the vertices of an existing clique (complete subgraph).



### **Chordal graphs**

**Definition.** A graph is **chordal** if it has no induced cycle of lengh greater than 3.

Iteratively add a new vertex connected to the vertices of an existing clique of size at most t.

Iteratively add a new vertex connected to the vertices of an existing clique of size at most t.



Iteratively add a new vertex connected to the vertices of an existing clique of size at most t.



#### Chordal graphs with tree-width at most $\boldsymbol{t}$

Iteratively add a new vertex connected to the vertices of an existing clique of size at most t.



#### **Chordal graphs with tree-width at most** *t*

**Definition.** The tree-width of a graph G is the minimum k such that G is the subgraph of a k-tree. 5/17

# Labelled vs unlabelled

A graph with n vertices is labelled if each vertex carries a different label in  $\{1, 2, \ldots, n\}$ .

# Labelled vs unlabelled

A graph with n vertices is labelled if each vertex carries a different label in  $\{1, 2, \ldots, n\}$ .

In an **unlabelled** graph, the vertices are undistinguishable.

### Labelled vs unlabelled

A graph with n vertices is labelled if each vertex carries a different label in  $\{1, 2, \ldots, n\}$ .

In an unlabelled graph, the vertices are undistinguishable.



6/17

Our goal is to determine the number of graphs in the family with size n.

Our goal is to determine the number of graphs in the family with size n.

**Definition.** A combinatorial class is a pair  $(\mathcal{A}, |\cdot|)$  where

- $\mathcal{A}$  is a family of combinatorial objects,
- $|\cdot|:\mathcal{A}\to\mathbb{N}$  is a size function,
- The number of objects with size n is  $a_n < \infty$ .

Our goal is to determine the number of graphs in the family with size n.

**Definition.** A combinatorial class is a pair  $(\mathcal{A}, |\cdot|)$  where

- $\mathcal{A}$  is a family of combinatorial objects,
- $|\cdot|:\mathcal{A}\to\mathbb{N}$  is a size function,
- The number of objects with size n is  $a_n < \infty$ .

**Definition.** The ordinary generating function (OGF) of  $(\mathcal{A}, |\cdot|)$  is the formal power series

$$A(x) = \sum_{n \ge 0} a_n x^n.$$

Suitable for unlabelled classes.

**Definition.** The **exponential generating function** (EGF) of  $(\mathcal{A}, |\cdot|)$  is the formal power series

$$A(x) = \sum_{n \ge 0} \frac{a_n}{n!} x^n.$$

Suitable for labelled classes.

Our goal is to determine the number of graphs in the family with size n.

**Definition.** A combinatorial class is a pair  $(\mathcal{A}, |\cdot|)$  where

- $\mathcal{A}$  is a family of combinatorial objects,
- $|\cdot|:\mathcal{A}\to\mathbb{N}$  is a size function,
- The number of objects with size n is  $a_n < \infty$ .

**Definition.** The ordinary generating function (OGF) of  $(\mathcal{A}, |\cdot|)$  is the formal power series

$$A(x) = \sum_{n \ge 0} a_n x^n.$$

#### Suitable for unlabelled classes.

**Definition.** The **exponential generating function** (EGF) of  $(\mathcal{A}, |\cdot|)$  is the formal power series

$$A(x) = \sum_{n \ge 0} \frac{a_n}{n!} x^n.$$

#### Suitable for labelled classes.

Operations between classes translate into relations involving their generating functions. The goal is to obtain (a system of) equations that determine the GF of our class. 7/

Let  ${\mathcal T}$  be the class of labelled trees.

Let  ${\mathcal T}$  be the class of labelled trees.

$$T(x) = \frac{1}{1!}x + \frac{1}{2!}x^2 + \frac{3}{3!}x^3 + \frac{16}{4!}x^4 \cdots$$

Let  ${\mathcal T}$  be the class of labelled trees.

1

$$T(x) = \frac{1}{1!}x + \frac{1}{2!}x^2 + \frac{3}{3!}x^3 + \frac{16}{4!}x^4 \cdots$$

Let  ${\mathcal T}$  be the class of labelled trees.

$$T(x) = \frac{1}{1!}x + \frac{1}{2!}x^2 + \frac{3}{3!}x^3 + \frac{16}{4!}x^4 \cdots$$



Let  ${\mathcal T}$  be the class of labelled trees.



Let  ${\mathcal T}$  be the class of labelled trees.



**Rooting**. Let  $\mathcal{T}^{\bullet}$  be the class of rooted labelled trees. Since all vertices are distinguishable, there are n ways to root a tree with n vertices. Thus,

$$T^{\bullet}(x) = \sum_{n \ge 0} n \frac{t_n}{n!} x^n = x T'(x).$$

Let  $\mathcal{T}$  be the class of labelled trees.



**Rooting**. Let  $\mathcal{T}^{\bullet}$  be the class of rooted labelled trees. Since all vertices are distinguishable, there are n ways to root a tree with n vertices. Thus,

$$T^{\bullet}(x) = \sum_{n \ge 0} n \frac{t_n}{n!} x^n = x T'(x).$$

**Unrooting**. To do the inverse operation, we can simply integrate:

$$T(x) = \int T^{\bullet}(x)/x \, dx.$$
8/17






#### Labelled trees



#### Labelled trees



#### Implicit equation:

$$T^{\bullet}(x) = x \exp(T^{\bullet}(x)) = x + x^2 + \frac{3x^3}{2} + \cdots$$
 (2)

#### Labelled trees



Implicit equation:

$$T^{\bullet}(x) = x \exp(T^{\bullet}(x)) = x + x^2 + \frac{3x^3}{2} + \cdots$$
 (2)

By using the Lagrange inversion formula we obtain:

$$|\mathcal{T}_n^{\bullet}| = n! [x^n] T^{\bullet}(x) = n^{n-1} \implies |\mathcal{T}_n| = |\mathcal{T}_n^{\bullet}|/n = n^{n-2}.$$
 9/17









 $(1)(2)(3) \longrightarrow s_1^3$ 

 $(1)(23) \longrightarrow s_1 s_2$ 









**Theorem** [Pólya 1937] The OGF of the unlabelled class  $\tilde{\mathcal{G}}$  is given by

$$\tilde{G}(x) = Z_{\mathcal{G}}(x, x^2, x^3, \dots).$$

10/17



**Theorem** [Pólya 1937] The OGF of the unlabelled class  $\tilde{\mathcal{G}}$  is given by

$$\tilde{G}(x) = Z_{\mathcal{G}}(x, x^2, x^3, \dots).$$

In our case, 3 ( 3

$$G(x) = \frac{3}{3!}(x^3 + x \cdot x^2) = x^3$$
10/17

Pólya trees: rooted, unlabelled trees.

Pólya trees: rooted, unlabelled trees.

**Theorem.** [Pólya, 1937] The OGF P(x) of Pólya trees is given by

$$P(x) = x \exp(P(x) + \frac{P(x^2)}{2} + \frac{P(x^3)}{3} + \dots).$$

As  $n \to \infty$  we have

$$[x^n]P(x) \sim \frac{b\sqrt{\rho}}{2\sqrt{\pi}} \cdot n^{-3/2} \cdot \rho^{-n},$$

with  $b \approx 2.681127$  and  $\rho \approx 0.338219$ .

Pólya trees: rooted, unlabelled trees.

**Theorem.** [Pólya, 1937] The OGF P(x) of Pólya trees is given by

$$P(x) = x \exp(P(x) + \frac{P(x^2)}{2} + \frac{P(x^3)}{3} + \dots).$$

As  $n \to \infty$  we have

$$[x^n]P(x) \sim \frac{b\sqrt{\rho}}{2\sqrt{\pi}} \cdot n^{-3/2} \cdot \rho^{-n},$$

with  $b \approx 2.681127$  and  $\rho \approx 0.338219$ .

#### What about unrooted unlabelled trees?

#### **Problem!**

#### **Problem!**

Rooting is biased in unlabelled graphs. Not every unlabelled graph of size n gives rise to n rooted graphs.



#### Problem!

Rooting is biased in unlabelled graphs. Not every unlabelled graph of size n gives rise to n rooted graphs.



**Theorem.** [Otter, 1948] The OGF U(x) of unlabelled trees is given by

$$U(x) = P(x) + \frac{1}{2}(P(x^2) - P(x)^2).$$

As  $n \to \infty$  we have

$$[x^{n}]P(x) \sim \frac{b^{3}\rho^{3/2}}{4\sqrt{\pi}} \cdot n^{-3/2} \cdot \rho^{-n},$$

with  $b \approx 2.681127$  and  $\rho \approx 0.338219$ . **Proof.** Using the dissymmetry theorem.



**Definition.** A cycle-pointed graph is a pair (G, c) where  $G \in \mathcal{G}$  is an unlabelled graph and c is a cycle of some automorphism of G.



**Definition.** A cycle-pointed graph is a pair (G, c) where  $G \in \mathcal{G}$  is an unlabelled graph and c is a cycle of some automorphism of G.

**Theorem.** [Bodirsky, Fusy, Kang & Vigerske (2007)]

Every unlabelled graph  $G \in \mathcal{G}$  of size n admits exactly n cycle-pointings.



**Definition.** A cycle-pointed graph is a pair (G, c) where  $G \in \mathcal{G}$  is an unlabelled graph and c is a cycle of some automorphism of G.

**Theorem.** [Bodirsky, Fusy, Kang & Vigerske (2007)] Every unlabelled graph  $G \in \mathcal{G}$  of size n admits exactly n cycle-pointings. **An unbiased rooting (pointing) operator!** 



**Definition.** A cycle-pointed graph is a pair (G, c) where  $G \in \mathcal{G}$  is an unlabelled graph and c is a cycle of some automorphism of G.

#### **Theorem.** [Bodirsky, Fusy, Kang & Vigerske (2007)] Every unlabelled graph $G \in \mathcal{G}$ of size n admits exactly n cycle-pointings.

#### An unbiased rooting (pointing) operator!

They extend Pólya theory to cycle-pointed graphs. In particular, they manage to unroot Pólya trees via cycle-pointing and they recover Otter's formula.

## Our class of graphs



**Chordal graphs with tree-width at most** *t* 

# Our class of graphs



Chordal graphs with tree-width at most t

[Wormald, 1985]: they admit a decomposition into k-connected components.

# Our class of graphs

![](_page_95_Picture_1.jpeg)

Chordal graphs with tree-width at most t

[Wormald, 1985]: they admit a decomposition into k-connected components.

[C., Drmota, Noy & Requilé, 2023]: assymptotic enumeration of the labelled class.

$$|\mathcal{G}_{t,n}| \sim c_t \cdot n^{-5/2} \cdot \gamma_t^n \cdot n!$$
 as  $n \to \infty$ ,

for some  $c_t > 0$  and  $\gamma_t > 1$ 

We need to take into account cycles of cliques, not just vertices.

We need to take into account cycles of cliques, not just vertices.

![](_page_97_Picture_2.jpeg)

We need to take into account cycles of cliques, not just vertices.

![](_page_98_Figure_2.jpeg)

The **edges** are in a cycle of length 2.

We need to take into account cycles of cliques, not just vertices.

![](_page_99_Picture_2.jpeg)

The **edges** are in a cycle of length 2.

The new edge is in a cycle of length 1 but different type: it flips itself.

We need to take into account cycles of cliques, not just vertices.

![](_page_100_Figure_2.jpeg)

The **edges** are in a cycle of length 2.

The new edge is in a cycle of length 1 but different type: it flips itself.

What we do:

- Refinement of cycle index sums to encode cycles of cliques.
- Extend cycle-pointing to cycles of cliques.

• [Harary & Palmer (1968)], [Fowler, Gessel, Labelle & Leroux (2002)]: asymptotic enumeration of unlabelled (rooted and unrooted) **2-trees** 

- [Harary & Palmer (1968)], [Fowler, Gessel, Labelle & Leroux (2002)]: asymptotic enumeration of unlabelled (rooted and unrooted) **2-trees**
- [Gainer-Dewar (2012)], [Gainer-Dewar & Gessel (2014)]: system of equations to compute the OGF of unlabelled *k*-trees with *n* vertices.

- [Harary & Palmer (1968)], [Fowler, Gessel, Labelle & Leroux (2002)]: asymptotic enumeration of unlabelled (rooted and unrooted) **2-trees**
- [Gainer-Dewar (2012)], [Gainer-Dewar & Gessel (2014)]: system of equations to compute the OGF of unlabelled *k*-trees with *n* vertices.
- [Drmota & Yu Jin (2014)]: asymptotic enumeration of unlabelled *k*-trees.

- [Harary & Palmer (1968)], [Fowler, Gessel, Labelle & Leroux (2002)]: asymptotic enumeration of unlabelled (rooted and unrooted) **2-trees**
- [Gainer-Dewar (2012)], [Gainer-Dewar & Gessel (2014)]: system of equations to compute the OGF of unlabelled *k*-trees with *n* vertices.
- [Drmota & Yu Jin (2014)]: asymptotic enumeration of unlabelled *k*-trees.
- This talk: generalisation of previous results.
  - [C. & Requilé (2024+)]: system of equations to compute the OGF of unlabelled chordal graphs with tree-width ≤ t.

- [Harary & Palmer (1968)], [Fowler, Gessel, Labelle & Leroux (2002)]: asymptotic enumeration of unlabelled (rooted and unrooted) **2-trees**
- [Gainer-Dewar (2012)], [Gainer-Dewar & Gessel (2014)]: system of equations to compute the OGF of unlabelled *k*-trees with *n* vertices.
- [Drmota & Yu Jin (2014)]: asymptotic enumeration of unlabelled *k*-trees.
- This talk: generalisation of previous results.
  - [C. & Requilé (2024+)]: system of equations to compute the OGF of unlabelled chordal graphs with tree-width ≤ t.

#### Future:

• [C.,Drmota & Requilé (soon?)]: asymptotic enumeration of unlabelled chordal graphs with bounded tree-width.

## The system

$$\begin{cases} X_{\mathcal{G}_{t,k+1}^{(k)}}^{\lambda} = \frac{k!}{\alpha(\lambda)\kappa(\lambda)} \frac{\partial}{\partial s_{\lambda,1}} X_{\mathcal{G}_{t,k+1}}, \\ X_{\mathcal{G}_{t,k}^{(k)}}^{\lambda} = Z_{\text{SET}}(s_{j} \to (X_{\mathcal{G}_{t,k+1}^{(k)} \circ_{k} \mathcal{G}_{t,k}^{(k)}})^{[j]})_{j \ge 1}, \\ X_{\mathcal{G}_{t,k+1}^{(k)} \circ_{k} \mathcal{G}_{t,k}^{(k)}} = X_{\mathcal{G}_{t,k+1}^{(k)}}^{\lambda} (s_{\mu,j} \to (X_{\mathcal{G}_{t,k}}^{\mu})^{[j]})_{\mu \vdash k,j \ge 1}, \\ X_{\mathcal{G}_{t,k+1}^{\bullet,k} \circ_{k} \mathcal{G}_{t,k}^{(k)}} = \sum_{\mu \vdash k} \frac{\alpha(\mu)\kappa(\mu)}{k!} t_{\mu,1} X_{\mathcal{G}_{t,k}^{(k)}}^{\mu} + X_{(\mathcal{G}_{t,k})}^{\bullet,k}, \\ X_{(\mathcal{G}_{t,k})_{\ge 2}}^{\bullet,k} = X_{(\mathcal{G}_{t,k+1})_{\ge 2}}^{\bullet,k} (s_{\mu,j} \to (X_{\mathcal{G}_{t,k}}^{\mu})^{[j]}, t_{\mu,j} \to (X_{(\mathcal{G}_{t,k})}^{\mu,i} \bullet_{k})^{[j]})_{\mu \vdash k,j \ge 1} \\ + \sum_{\mu \vdash k} \frac{\alpha(\mu)\kappa(\mu)}{k!} s_{\mu,1} Z_{\text{SET}}_{\ge 2}^{\bullet} (s_{j} \to (X_{\mathcal{G}_{t,k+1}}^{\mu,j} \circ_{k} \mathcal{G}_{t,k}^{(k)})^{[j]}, \\ t_{j} \to (X_{(\mathcal{G}_{t,k+1}^{\mu,j} \circ_{k} \mathcal{G}_{t,k}^{(k)}) \bullet_{k}})^{[j]})_{j \ge 1}, \\ X_{\mathcal{G}_{t,k}} = \sum_{\lambda \vdash k} \sum_{1 \le j \le \binom{t+1}{k}} \int \frac{1}{jt_{\lambda,j}}} X_{\mathcal{G}_{t,k}}^{\bullet,k} (S(\lambda,j) \to 0, T(\lambda,j) \to 0) ds_{\lambda,j} \end{cases}$$