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Introduction

The work can be divided into two main parts.
1. Work out the combinatorics and find the equations that

define our generating functions using the symbolic method.
We also make use of the dissymmetry theorem.

2. Do the singularity analysis of our equations to obtain the
asymptotic behaviour. We use theorems from Analytic
Combinatorics [Flajolet, Sedgewick ’09] and Random Trees
[Drmota ’09].
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The work can be divided into two main parts.
1. Work out the combinatorics and find the equations that

define our generating functions using the symbolic method.
We also make use of the dissymmetry theorem.

2. Do the singularity analysis of our equations to obtain the
asymptotic behaviour. We use theorems from Analytic
Combinatorics [Flajolet, Sedgewick ’09] and Random Trees
[Drmota ’09].

Our graphs are labelled, counted by their number of vertices
and we use exponential generating functions

∑
n≥0 gn

xn

n! ,
where gn is the number of graphs in the class with n vertices.

Maps are counted by edges and we use regular generating
functions

∑
n≥0 Mnz

n, where Mn is the number of maps in
the class with n edges.
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Chordal graphs

Definition. A graph is chordal if it has no induced cycle of
lengh greater than 3.
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How to count our graphs?

We use the canonical decomposition of graphs into
k-connected components for k = 1, 2, 3.
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How to count our graphs?

We use the canonical decomposition of graphs into
k-connected components for k = 1, 2, 3.

G: labelled chordal planar graphs

C ⊂ G: connected members of the class

B ⊂ C: 2-connected members of the class

U ⊂ B: 3-connected members of the class

G(x) = exp(C(x))

C•(x) = x exp(B′(C•(x))), C•(x) = xC ′(x)

Networks: parallel compositions of series
compositions and 3-connected
components.
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3-connected graphs

3-connected chordal planar graphs are chordal triangulations:
the graphs obtained starting from a K4 and repeatedly adding
a vertex adjacent to the three vertices of a triangle.



5/28

3-connected graphs

3-connected chordal planar graphs are chordal triangulations:
the graphs obtained starting from a K4 and repeatedly adding
a vertex adjacent to the three vertices of a triangle.



5/28

3-connected graphs

3-connected chordal planar graphs are chordal triangulations:
the graphs obtained starting from a K4 and repeatedly adding
a vertex adjacent to the three vertices of a triangle.



5/28

3-connected graphs

3-connected chordal planar graphs are chordal triangulations:
the graphs obtained starting from a K4 and repeatedly adding
a vertex adjacent to the three vertices of a triangle.



5/28

3-connected graphs

3-connected chordal planar graphs are chordal triangulations:
the graphs obtained starting from a K4 and repeatedly adding
a vertex adjacent to the three vertices of a triangle.



5/28

3-connected graphs

3-connected chordal planar graphs are chordal triangulations:
the graphs obtained starting from a K4 and repeatedly adding
a vertex adjacent to the three vertices of a triangle.

To show this, we use the perfect elimination ordering.
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Counting chordal triangulations

Chordal triangulations are in bijection with ternary trees.

The generating function of ternary trees is given by
S(z) = z(1 + S(z)3).

From the bijection, the generating function of labelled chordal

triangulations rooted at a directed edge is T (z) = zS(z)
2 ,

where z counts #vertices−2.
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Counting chordal triangulations

To obtain the generating function of unrooted chordal
triangulations, we could take into account the number of edges
in the previous equation and then integrate algebraically.

Instead, we choose to use the dissymmetry theorem and keep
our proofs combinatorial.
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The dissymmetry theorem

Theorem. Let A be a class of trees. Then,

A+A•→• ≃ A• +A•−•

where ≃ is a bijection preserving the number of nodes.
Proof sketch. Oriented edges towards the center of the tree
correspond to vertices and the others correspond to
nonoriented edges.
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The dissymmetry theorem

Theorem. Let A be a class of trees. Then,

A+A•→• ≃ A• +A•−•

where ≃ is a bijection preserving the number of nodes.
Proof sketch. Oriented edges towards the center of the tree
correspond to vertices and the others correspond to
nonoriented edges.

This theorem can be applied to tree-decomposable classes of
graphs or, generally, to objects in bijection with some family of
trees.
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Counting chordal triangulations

Chordal triangulations are obtained by gluing copies of K4

though triangles.
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Counting chordal triangulations

This decomposition yields the following equations:

A• =
z4

24
(1 + S(z))4

A•−• =
z3

12
S(z)2

A•→• = 2A•−•

U(z) = A = A• −A•−• =
z3

24
(S(z)− S(z)2)
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2-connected graphs

Definition. A network is a 2-connected graph rooted at a
directed edge whose vertices are unmarked.

If B(x, y) is the generating function of 2-connected graphs and
E(x, y) is the generating function of networks, where x marks
vertices and y marks edges, one has

E(x, y) =
2y

x2
By(x, y).
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Definition. A network is a 2-connected graph rooted at a
directed edge whose vertices are unmarked.

If B(x, y) is the generating function of 2-connected graphs and
E(x, y) is the generating function of networks, where x marks
vertices and y marks edges, one has

E(x, y) =
2y

x2
By(x, y).

Following the classical decomposition [Giménez, Noy, Rué ’13],
networks are parallel compositions of series compositions
and 3-connected components, recursively substituting edges
by networks.
In our context, 3-connected components are exactly chordal
triangulations.
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2-connected graphs

How do our networks look like?

We obtain the following equation:

E(x, y) = y exp

(
xE(x, y)2 +

T (xE(x, y)3)

E(x, y)

)
.
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2-connected graphs

To get the unrooted graphs, we need to compute the integral

B(x, y) =
x2

2

∫
E(x, y)

y
dy.

Again, we can use the dissymmetry theorem.
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2-connected graphs

To get the unrooted graphs, we need to compute the integral

B(x, y) =
x2

2

∫
E(x, y)

y
dy.

Again, we can use the dissymmetry theorem.

Observe that 2-connected graphs are the result of gluing
chordal triangulations and triangles through edges.

Therefore, we can encode them using trees whose nodes have
3 possible types: e (edge), s (series/triangle) and t
(triangulation). Notice that the edges can only be of type s-e
or t-e.
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2-connected graphs

t
e s

e

s

s
e

t
e

s
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2-connected graphs

This tree decomposition yields the following equations:

Re(x) =
x2

2
(E(x)− xE(x)2 − T (xE(x)3)/E)

Rs(x) =
x3

6
E(x)3 Rt(x) =

U(xE(x)3)

E(x)3

Rs−e =
x3

2
E(x)2(E(x)− 1)

Rt−e =
x2

2
T (xE(x)3)

E(x)− 1

E(x)
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2-connected graphs

This tree decomposition yields the following equations:

Re(x) =
x2

2
(E(x)− xE(x)2 − T (xE(x)3)/E)

Rs(x) =
x3

6
E(x)3 Rt(x) =

U(xE(x)3)

E(x)3

Rs−e =
x3

2
E(x)2(E(x)− 1)

Rt−e =
x2

2
T (xE(x)3)

E(x)− 1

E(x)

Putting everything together,

B(x) = Rs(x) +Rt(x) +Re(x)−Rs−e(x)−Rt−e(x)

=
x2

2

(
E(x)− xE(x)3

12

(
S(xE(x)3)2 + 5S(xE3(x)) + 8

))
.
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Connected and arbitrary graphs

We use the classical decomposition of a connected graph into
2-connected components.
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We use the classical decomposition of a connected graph into
2-connected components.
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where C•(x) = xC ′(x) are connected graphs rooted at a
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Connected and arbitrary graphs

We use the classical decomposition of a connected graph into
2-connected components.

The equation associated to the decomposition is

C•(x) = x exp(B′(C•(x))),

where C•(x) = xC ′(x) are connected graphs rooted at a
vertex.

Finally, arbitrary graphs are given by G(x) = exp(C(x)).
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Singularity analysis of 2-connected graphs

We have the system{
E(x) = exp

(
xE(x)2 + xE(x)2S(xE(x)3)

2

)
S(xE(x)3) = xE(x)3(1 + S(xE(x)3))3

Omitting the arguments of S and E,{
E = exp

(
xE2 + xE2S

2

)
S = xE3(1 + S)3
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Singularity analysis of 2-connected graphs

We have the system{
E(x) = exp

(
xE(x)2 + xE(x)2S(xE(x)3)

2

)
S(xE(x)3) = xE(x)3(1 + S(xE(x)3))3

Omitting the arguments of S and E,{
E = exp

(
xE2 + xE2S

2

)
S = xE3(1 + S)3

This system is amenable to the Drmota-Lalley-Woods theorem.
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Singularity analysis of 2-connected graphs

We obtain that ρb ≈ 0.092859 is the unique dominant
singularity of E(x), and E(x) admits an analytic continuation
in a ∆-domain of the form ∆(Rb, ϕb), for some Rb > ρb and
0 < ϕb < π/2:

E(x) = E0 + E1

√
1− x

ρb
+O

(
1− x

ρb

)
, for x ∼ ρb,

where E0 ≈ 1.16454 and E1 ≈ 0.092354.
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Singularity analysis of 2-connected graphs

We obtain that ρb ≈ 0.092859 is the unique dominant
singularity of E(x), and E(x) admits an analytic continuation
in a ∆-domain of the form ∆(Rb, ϕb), for some Rb > ρb and
0 < ϕb < π/2:

E(x) = E0 + E1

√
1− x

ρb
+O

(
1− x

ρb

)
, for x ∼ ρb,

where E0 ≈ 1.16454 and E1 ≈ 0.092354.

Also note that ρbE
3
0 ≈ 0.14665 < 4/27, where 4/27 is the

dominant singularity of S(z). This implies that the
composition scheme S(xE(x)3) is subcritical.
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Singularity analysis of 2-connected graphs

It follows that B(x) also has ρb as its unique dominant
singularity.
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Singularity analysis of 2-connected graphs

It follows that B(x) also has ρb as its unique dominant
singularity.

We also show that B(x) admits an analytic continuation in
∆(Rb, ϕb):

B(x) = B0−B2

(
1− x

ρb

)
+B3

(
1− x

ρb

)3/2

+O

(
1− x

ρb

)2

,

where B0 ≈ 0.0044796, B2 ≈ 0.0085328 and
B3 ≈ 0.00038321.
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Singularity analysis of connected graphs

For the connected graphs, the composition scheme

C•(x) = x exp(B′(C•(x)))

is also subcritical because B′′(ρb) → ∞. Therefore, the
singularities of C• come from a branch point and not from the
singularities of B.
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Singularity analysis of connected graphs

For the connected graphs, the composition scheme

C•(x) = x exp(B′(C•(x)))

is also subcritical because B′′(ρb) → ∞. Therefore, the
singularities of C• come from a branch point and not from the
singularities of B.

We now solve the equation obtained by differentiating the
expression above:

τB′′(τ) = 1

And find the unique dominant singularity of C•

ρ = τe−B′(τ) ≈ 0.084088.
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Singularity analysis of connected graphs

As before, C(x) admits an analytic continuation in a
∆-domain ∆(R,ϕ), for some R > ρ and 0 < ϕ < π/2:

C(x) = C0 − C2

(
1− x

ρ

)
+ C3

(
1− x

ρ

)3/2

+O

(
1− x

ρ

)2

,

where C0 ≈ 0.00037470, C2 ≈ 0.092859 and C3 ≈ 0.00027194.
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Singularity analysis of arbitrary graphs

Since G(x) = exp(C(x)), the dominant singularity of G(x) is
also ρ and again G(x) admits an analytic continuation in
∆(R,ϕ):

G(x) = eC0

(
1− C2

(
1− x

ρ

)
+ C3

(
1− x

ρ

)3/2
)

+O

(
1− x

ρ

)2

.

Therefore, G0 = eC0 ≈ 1.00037, G2 = C2e
C0 ≈ 0.092894 and

G3 = C3e
C0 ≈ 0.00027205.
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Main theorem

Theorem. Let gn be the number of labelled chordal planar
graphs with n vertices, cn those which are connected, and bn
those which are 2-connected. Then as n → ∞ we have
1. gn ∼ g · n−5/2γnn!, γ ≈ 11.89235, g ≈ 0.00027205
2. cn ∼ c · n−5/2γnn!, c ≈ 0.00027194,
3. bn ∼ b · n−5/2γn

b n!, γb ≈ 10.76897, b ≈ 0.00016215,
Where γ = 1/ρ and γb = 1/ρb.
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tends to p = c/g ≈ 0.99963, as n → ∞.
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1. gn ∼ g · n−5/2γnn!, γ ≈ 11.89235, g ≈ 0.00027205
2. cn ∼ c · n−5/2γnn!, c ≈ 0.00027194,
3. bn ∼ b · n−5/2γn

b n!, γb ≈ 10.76897, b ≈ 0.00016215,
Where γ = 1/ρ and γb = 1/ρb.

An immediate corollary is that the probability that a random
labelled chordal planar graph (uniformly chosen) is connected
tends to p = c/g ≈ 0.99963, as n → ∞.

In fact, it is also straightforward to show [Giménez, Noy, Rué
’13] that the number of connected components is
asymptotically distributed as 1+X, where X follows a Poisson
law with parameter C0 ≈ 0.00037470, so that p = e−C0 .
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3-connected and 2-connected maps

The 3-connected maps are also chordal triangulations.

Let D(z) be the generating function of 2-connected chordal
simple maps, where z marks the number of edges minus one.

The 2-connected maps are decomposed into sequences of
smaller maps, instead of sets. Maps grow from both sides of
edges. We have

D(z) =
1

1− z2D(z)4 (1 + S (z3D(z)6))
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All maps

Let M(z) be the generating function of all simple chordal
maps, where z marks the total number of edges. The
decomposition of a map into blocks is given by the equation

M(z) = B
(
z(1 +M(z))2

)
,

reflecting the fact that a map is obtained from its 2-connected
core by attaching a (possibly empty) map at each corner.
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Singularity analysis

By algebraic elimination, we can obtain irreducible polynomial
equations satisfied by B(z) and M(z) and compute the
singularities. As before, the composition scheme
M(z) = B

(
z(1 +M(z))2

)
is subcritical.
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Singularity analysis

By algebraic elimination, we can obtain irreducible polynomial
equations satisfied by B(z) and M(z) and compute the
singularities. As before, the composition scheme
M(z) = B

(
z(1 +M(z))2

)
is subcritical.

Theorem. Let Mn be the number of rooted chordal simple
planar maps with n edges, and Bn those which are
2-connected. Then as n → ∞ we have
1. Bn ∼ b · n−3/2 · σ−n

b , with b ≈ 0.071674 and σ−1
b ≈

3.65370,
2. Mn ∼ m · n−3/2 · σ−n, with m ≈ 0.12596 and σ−1 ≈

6.40375.
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Future work

• Enumerate related families of chordal graphs, such as
outerplanar, series-parallel graphs and planar multigraphs. Also
non-planar graphs, such as K3,3 or K5-minor-free graphs and
graphs with bounded tree-width.
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Future work

• Enumerate related families of chordal graphs, such as
outerplanar, series-parallel graphs and planar multigraphs. Also
non-planar graphs, such as K3,3 or K5-minor-free graphs and
graphs with bounded tree-width.

• Enumerate non-labelled chordal planar graphs, using
Pólya’s theory of counting.
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Merci!
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