
Enumeration of unlabelled
chordal graphs with bounded

tree-width

RandNET Workshop - Wien

Jordi Castellv́ı (CRM)

Work in collaboration with Michael Drmota
and Clément Requilé

1/22

Introduction

How to build a tree?

1/22

Introduction

Iteratively add a new vertex connected to an existing vertex.

How to build a tree?

1/22

Introduction

Iteratively add a new vertex connected to an existing vertex.

How to build a tree?

1/22

Introduction

Iteratively add a new vertex connected to an existing vertex.

How to build a tree?

1/22

Introduction

Iteratively add a new vertex connected to an existing vertex.

How to build a tree?

1/22

Introduction

Iteratively add a new vertex connected to an existing vertex.

How to build a tree?

1/22

Introduction

Iteratively add a new vertex connected to an existing vertex.

How to build a tree?

1/22

Introduction

Iteratively add a new vertex connected to an existing vertex.

How to build a tree?

1/22

Introduction

Iteratively add a new vertex connected to an existing vertex.

How to build a tree?

1/22

Introduction

Iteratively add a new vertex connected to an existing vertex.

How to build a tree?

2/22

Introduction

Iteratively add a new vertex connected to the vertices of an existing edge.

2/22

Introduction

Iteratively add a new vertex connected to the vertices of an existing edge.

2/22

Introduction

Iteratively add a new vertex connected to the vertices of an existing edge.

2/22

Introduction

Iteratively add a new vertex connected to the vertices of an existing edge.

2/22

Introduction

Iteratively add a new vertex connected to the vertices of an existing edge.

2/22

Introduction

Iteratively add a new vertex connected to the vertices of an existing edge.

2/22

Introduction

Iteratively add a new vertex connected to the vertices of an existing edge.

2/22

Introduction

Iteratively add a new vertex connected to the vertices of an existing edge.

2/22

Introduction

Iteratively add a new vertex connected to the vertices of an existing edge.

2/22

Introduction

2-trees

Iteratively add a new vertex connected to the vertices of an existing edge.

3/22

Introduction
Iteratively add a new vertex connected to the vertices of an existing
triangle.

3/22

Introduction
Iteratively add a new vertex connected to the vertices of an existing
triangle.

3/22

Introduction
Iteratively add a new vertex connected to the vertices of an existing
triangle.

3/22

Introduction
Iteratively add a new vertex connected to the vertices of an existing
triangle.

3/22

Introduction
Iteratively add a new vertex connected to the vertices of an existing
triangle.

3/22

Introduction
Iteratively add a new vertex connected to the vertices of an existing
triangle.

3/22

Introduction
Iteratively add a new vertex connected to the vertices of an existing
triangle.

3/22

Introduction

3-trees

Iteratively add a new vertex connected to the vertices of an existing
triangle.

3/22

Introduction

3-trees

Iteratively add a new vertex connected to the vertices of an existing
triangle.

Definition. A k-tree is a graph obtained from a (k + 1)-clique by
successively adding a new vertex connected to all vertices of an existing
k-clique.

4/22

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique (complete subgraph).

4/22

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique (complete subgraph).

4/22

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique (complete subgraph).

4/22

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique (complete subgraph).

4/22

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique (complete subgraph).

4/22

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique (complete subgraph).

4/22

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique (complete subgraph).

4/22

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique (complete subgraph).

4/22

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique (complete subgraph).

4/22

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique (complete subgraph).

4/22

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique (complete subgraph).

4/22

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique (complete subgraph).

4/22

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique (complete subgraph).

4/22

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique (complete subgraph).

4/22

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique (complete subgraph).

4/22

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique (complete subgraph).

4/22

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique (complete subgraph).

4/22

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique (complete subgraph).

4/22

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique (complete subgraph).

4/22

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique (complete subgraph).

4/22

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique (complete subgraph).

Chordal graphs

4/22

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique (complete subgraph).

Chordal graphs

Definition. A graph is chordal if it has no induced cycle of lengh greater
than 3.

5/22

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique of size at most t.

5/22

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique of size at most t.

t = 3

5/22

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique of size at most t.

t = 3

Chordal graphs with tree-width at most t

5/22

Introduction
Iteratively add a new vertex connected to the vertices of an existing
clique of size at most t.

t = 3

Chordal graphs with tree-width at most t

Definition. The tree-width of a graph G is the minimum k such that G
is the subgraph of a k-tree.

6/22

The symbolic method
Our goal is to determine the number of graphs in the family with size n.

6/22

The symbolic method
Our goal is to determine the number of graphs in the family with size n.

Definition. A combinatorial class is a pair (A, | · |) where
• A is a family of combinatorial objects,
• | · | : A → N is a size function,
• The number of objects with size n is an < ∞.

6/22

The symbolic method
Our goal is to determine the number of graphs in the family with size n.

Definition. A combinatorial class is a pair (A, | · |) where
• A is a family of combinatorial objects,
• | · | : A → N is a size function,
• The number of objects with size n is an < ∞.

Definition. The ordinary
generating function (OGF) of
(A, | · |) is the formal power series

A(x) =
∑
n≥0

anx
n.

Suitable for unlabelled classes.

Definition. The exponential
generating function (EGF) of
(A, | · |) is the formal power series

A(x) =
∑
n≥0

an
n!

xn.

Suitable for labelled classes.

6/22

The symbolic method
Our goal is to determine the number of graphs in the family with size n.

Definition. A combinatorial class is a pair (A, | · |) where
• A is a family of combinatorial objects,
• | · | : A → N is a size function,
• The number of objects with size n is an < ∞.

Definition. The ordinary
generating function (OGF) of
(A, | · |) is the formal power series

A(x) =
∑
n≥0

anx
n.

Suitable for unlabelled classes.

Definition. The exponential
generating function (EGF) of
(A, | · |) is the formal power series

A(x) =
∑
n≥0

an
n!

xn.

Suitable for labelled classes.

Operations between classes translate into relations involving their
generating functions. The goal is to obtain (a system of) equations
that determine the GF of our class.

7/22

Decomposition of graphs
into k-connected components

Definition. The 2-connected components (or blocks) of a connected
graph are its maximal 2-connected subgraphs.

7/22

Decomposition of graphs
into k-connected components

Definition. The 2-connected components (or blocks) of a connected
graph are its maximal 2-connected subgraphs.

7/22

Decomposition of graphs
into k-connected components

Definition. The 2-connected components (or blocks) of a connected
graph are its maximal 2-connected subgraphs.

8/22

Decomposition of graphs
into k-connected components

Let B ⊂ C be the class of the 2-connected members of G. Then,

C•(x) = x exp(B′(C•(x))), where C•(x) = xC ′(x),

provided that G is block-stable, i.e., that a graph belongs to C iff its
blocks belong to B.

8/22

Decomposition of graphs
into k-connected components

Let B ⊂ C be the class of the 2-connected members of G. Then,

C•(x) = x exp(B′(C•(x))), where C•(x) = xC ′(x),

provided that G is block-stable, i.e., that a graph belongs to C iff its
blocks belong to B.

2-connected

2-connected

2-connected

8/22

Decomposition of graphs
into k-connected components

Let B ⊂ C be the class of the 2-connected members of G. Then,

C•(x) = x exp(B′(C•(x))), where C•(x) = xC ′(x),

provided that G is block-stable, i.e., that a graph belongs to C iff its
blocks belong to B.

2-connected

2-connected

2-connected

8/22

Decomposition of graphs
into k-connected components

Let B ⊂ C be the class of the 2-connected members of G. Then,

C•(x) = x exp(B′(C•(x))), where C•(x) = xC ′(x),

provided that G is block-stable, i.e., that a graph belongs to C iff its
blocks belong to B.

2-connected

2-connected

2-connected

connected

9/22

Decomposition of graphs
into k-connected components

The 3-connected components of a 2-connected graph can also be defined,
but the details are a little more involved.
There is also a relation between their generating functions.

9/22

Decomposition of graphs
into k-connected components

The 3-connected components of a 2-connected graph can also be defined,
but the details are a little more involved.
There is also a relation between their generating functions.

Unfortunately, the 4-connected components of 3-connected graphs
cannot be defined in general (in such a way that the decomposition is
unambiguous and well-defined).

9/22

Decomposition of graphs
into k-connected components

The 3-connected components of a 2-connected graph can also be defined,
but the details are a little more involved.
There is also a relation between their generating functions.

Unfortunately, the 4-connected components of 3-connected graphs
cannot be defined in general (in such a way that the decomposition is
unambiguous and well-defined).

However, any k-connected chordal graph admits a decomposition into
(k + 1)-connected components! [Wormald, 1985]

10/22

Decomposition of chordal graphs
into k-connected components

“Definition”. Slicing through a k-separator:

10/22

Decomposition of chordal graphs
into k-connected components

“Definition”. Slicing through a k-separator:

10/22

Decomposition of chordal graphs
into k-connected components

“Definition”. Slicing through a k-separator:

10/22

Decomposition of chordal graphs
into k-connected components

“Definition”. Slicing through a k-separator:

“Definition”. The (k + 1)-connected components of a k-connected
chordal graph are obtained by slicing it through all its k-separators
(which are k-cliques).

10/22

Decomposition of chordal graphs
into k-connected components

“Definition”. Slicing through a k-separator:

“Definition”. The (k + 1)-connected components of a k-connected
chordal graph are obtained by slicing it through all its k-separators
(which are k-cliques).

Proposition. This is well defined (the order does not matter, no
k-separators appear or disappear in the process).

10/22

Decomposition of chordal graphs
into k-connected components

“Definition”. Slicing through a k-separator:

“Definition”. The (k + 1)-connected components of a k-connected
chordal graph are obtained by slicing it through all its k-separators
(which are k-cliques).

Proposition. This is well defined (the order does not matter, no
k-separators appear or disappear in the process).

→ Note that the (k + 1)-connected components are the maximal
(k + 1)-connected subgraphs.

11/22

Decomposition of chordal graphs
into k-connected components

Kk

Kk

Kk Kk

(k + 1)-connected

(k + 1)-connected

(k + 1)-connected

11/22

Decomposition of chordal graphs
into k-connected components

Kk (k + 1)-connected

(k + 1)-connected
(k + 1)-connected

11/22

Decomposition of chordal graphs
into k-connected components

Kk

Kk

(k + 1)-connected

(k + 1)-connected

k-connected

11/22

Decomposition of chordal graphs
into k-connected components

Kk

Kk

Let G(i)
k be the class of k-connected chordal graphs rooted at an

unlabelled, ordered i-clique.

Consider its multivariate exponential generating function G
(j)
k (x, xk),

where the variable xk marks the number of k-cliques. Then, we have that

G
(k)
k (x, xk) = exp

(
G

(k)
k+1(x, xkG

(k)
k (x, xk))

)
.

(k + 1)-connected

(k + 1)-connected

k-connected

11/22

Decomposition of chordal graphs
into k-connected components

Kk

Kk

Let G(i)
k be the class of k-connected chordal graphs rooted at an

unlabelled, ordered i-clique.

Consider its multivariate exponential generating function G
(j)
k (x, xk),

where the variable xk marks the number of k-cliques. Then, we have that

G
(k)
k (x, xk) = exp

(
G

(k)
k+1(x, xkG

(k)
k (x, xk))

)
.

(k + 1)-connected

(k + 1)-connected

k-connected

This generalizes the classical decomposition of connected graphs into
2-connected components.

12/22

Labelled vs unlabelled
A graph with n vertices is labelled if each vertex carries a different label
in {1, 2, . . . , n}.

12/22

Labelled vs unlabelled
A graph with n vertices is labelled if each vertex carries a different label
in {1, 2, . . . , n}.

In an unlabelled graph, the vertices are undistinguishable.

12/22

Labelled vs unlabelled
A graph with n vertices is labelled if each vertex carries a different label
in {1, 2, . . . , n}.

In an unlabelled graph, the vertices are undistinguishable.

1

3

3

2

2

3

2

1

1

12/22

Labelled vs unlabelled
A graph with n vertices is labelled if each vertex carries a different label
in {1, 2, . . . , n}.

In an unlabelled graph, the vertices are undistinguishable.

1

3

3

2

2

3

2

1

1

Unlabelled graphs are usually
harder to count than labelled
graphs.
• Labelled trees (Cayley trees)
[Borchardt, 1860]

• Unlabelled trees (free trees)
[Otter, 1948]

13/22

Counting unlabelled graphs - Pólya theory

1

3 2

13/22

Counting unlabelled graphs - Pólya theory

1

3 2

(1)(2)(3) −→ s31

13/22

Counting unlabelled graphs - Pólya theory

1

3 2

(1)(2)(3) −→ s31

1

3 2

(1)(23) −→ s1s2

13/22

Counting unlabelled graphs - Pólya theory

1

3 2

(1)(2)(3) −→ s31

1

3 2

(1)(23) −→ s1s2

1

3!
(s31 + s1s2)

13/22

Counting unlabelled graphs - Pólya theory

1

3 2

(1)(2)(3) −→ s31

1

3 2

(1)(23) −→ s1s2

1

3!
(s31 + s1s2)

3

3!
(s31 + s1s2)

3 labelled graphs
in the class

13/22

Counting unlabelled graphs - Pólya theory

1

3 2

(1)(2)(3) −→ s31

1

3 2

(1)(23) −→ s1s2

1

3!
(s31 + s1s2)

3

3!
(s31 + s1s2)

3 labelled graphs
in the class

Cycle index sum
ZG(s1, s2, s3, . . .)

13/22

Counting unlabelled graphs - Pólya theory

1

3 2

(1)(2)(3) −→ s31

1

3 2

(1)(23) −→ s1s2

1

3!
(s31 + s1s2)

3

3!
(s31 + s1s2)

3 labelled graphs
in the class

Cycle index sum
ZG(s1, s2, s3, . . .)

Theorem [Pólya 1937]
The OGF of the unlabelled class G̃
is given by

G̃(x) = ZG(x, x
2, x3, . . .).

13/22

Counting unlabelled graphs - Pólya theory

1

3 2

(1)(2)(3) −→ s31

1

3 2

(1)(23) −→ s1s2

1

3!
(s31 + s1s2)

3

3!
(s31 + s1s2)

3 labelled graphs
in the class

Cycle index sum
ZG(s1, s2, s3, . . .)

Theorem [Pólya 1937]
The OGF of the unlabelled class G̃
is given by

G̃(x) = ZG(x, x
2, x3, . . .).

In our case,

G(x) =
3

3!
(x3 + x · x2) = x3

14/22

Unlabelled trees
Pólya trees: rooted, unlabelled trees.

14/22

Unlabelled trees
Pólya trees: rooted, unlabelled trees.

Theorem. [Pólya, 1937]
The OGF P (x) of Pólya trees is given by

P (x) = x exp

(
P (x) +

P (x2)

2
+

P (x3)

3
+ . . .

)
.

As n → ∞ we have

[xn]P (x) ∼
b
√
ρ

2
√
π
· n−3/2 · ρ−n,

with b ≈ 2.681127 and ρ ≈ 0.338219.

14/22

Unlabelled trees
Pólya trees: rooted, unlabelled trees.

Theorem. [Pólya, 1937]
The OGF P (x) of Pólya trees is given by

P (x) = x exp

(
P (x) +

P (x2)

2
+

P (x3)

3
+ . . .

)
.

As n → ∞ we have

[xn]P (x) ∼
b
√
ρ

2
√
π
· n−3/2 · ρ−n,

with b ≈ 2.681127 and ρ ≈ 0.338219.

What about unrooted unlabelled trees?

15/22

Unlabelled trees

Problem!

15/22

Unlabelled trees

Problem!
Rooting is biased in unlabelled graphs.
Not every unlabelled graph of size n gives
rise to n rooted graphs.

15/22

Unlabelled trees

Problem!

Theorem. [Otter, 1948]
The OGF U(x) of unlabelled trees is given by

U(x) = P (x) +
1

2
(P (x2)− P (x)2).

As n → ∞ we have

[xn]P (x) ∼ b3ρ3/2

4
√
π

· n−3/2 · ρ−n,

with b ≈ 2.681127 and ρ ≈ 0.338219.

Proof. Using the dissymmetry theorem.

Rooting is biased in unlabelled graphs.
Not every unlabelled graph of size n gives
rise to n rooted graphs.

16/22

Cycle-pointing

Definition. A cycle-pointed graph is a pair (G, c) where G ∈ G is an
unlabelled graph and c is a cycle of some automorphism of G.

16/22

Cycle-pointing

Definition. A cycle-pointed graph is a pair (G, c) where G ∈ G is an
unlabelled graph and c is a cycle of some automorphism of G.

Theorem. [Bodirsky, Fusy, Kang & Vigerske (2007)]
Every unlabelled graph G ∈ G of size n admits exactly n cycle-pointings.

16/22

Cycle-pointing

Definition. A cycle-pointed graph is a pair (G, c) where G ∈ G is an
unlabelled graph and c is a cycle of some automorphism of G.

Theorem. [Bodirsky, Fusy, Kang & Vigerske (2007)]
Every unlabelled graph G ∈ G of size n admits exactly n cycle-pointings.

An unbiased rooting (pointing) operator!

16/22

Cycle-pointing

Definition. A cycle-pointed graph is a pair (G, c) where G ∈ G is an
unlabelled graph and c is a cycle of some automorphism of G.

Theorem. [Bodirsky, Fusy, Kang & Vigerske (2007)]
Every unlabelled graph G ∈ G of size n admits exactly n cycle-pointings.

An unbiased rooting (pointing) operator!

They extend Pólya theory to cycle-pointed graphs. In particular, they
manage to unroot Pólya trees via cycle-pointing and they recover Otter’s
formula.

17/22

Our class of graphs

Chordal graphs with
tree-width at most t

17/22

Our class of graphs

Chordal graphs with
tree-width at most t

[C., Drmota, Noy & Requilé, 2023]: assymptotic enumeration of the
labelled class.

|Gt,n| ∼ ct · n−5/2 · γn
t · n! as n → ∞,

for some ct > 0 and γt > 1

18/22

An extension of Pólya theory
We need to take into account cycles of cliques, not just vertices.

18/22

An extension of Pólya theory
We need to take into account cycles of cliques, not just vertices.

1

3 2

18/22

An extension of Pólya theory
We need to take into account cycles of cliques, not just vertices.

1

3 2

The edges are in a cycle of
length 2.

18/22

An extension of Pólya theory
We need to take into account cycles of cliques, not just vertices.

1

3 2

The edges are in a cycle of
length 2.

1

3 2

The new edge is in a cycle of length
1 but different type: it flips itself.

18/22

An extension of Pólya theory
We need to take into account cycles of cliques, not just vertices.

1

3 2

The edges are in a cycle of
length 2.

1

3 2

The new edge is in a cycle of length
1 but different type: it flips itself.

s(1),1s(1),2s(1,1),2s(2),1

18/22

An extension of Pólya theory
We need to take into account cycles of cliques, not just vertices.

1

3 2

The edges are in a cycle of
length 2.

1

3 2

The new edge is in a cycle of length
1 but different type: it flips itself.

What we do:
• Refinement of cycle index sums to encode cycles of cliques.
• Extend cycle-pointing to cycles of cliques.

s(1),1s(1),2s(1,1),2s(2),1

19/22

Example: composition
Classic setting: EGF, labelled graphs, substitution of vertices. If
C = A ◦ B

C(x) = A(B(X)).

19/22

Example: composition
Classic setting: EGF, labelled graphs, substitution of vertices. If
C = A ◦ B

C(x) = A(B(X)).

Pólya setting: Cycle index sum, unlabelled graphs, substitution of
vertices. If C = A ◦ B,

ZC = ZA(ZB(s1, s2, s3, . . .), ZB(s2, s4, s6, . . .), . . .)

= ZA(sj → ZB(sj , s2j , s3j , . . .))j≥1

= ZA(sj → Z
[j]
B)j≥1

19/22

Example: composition
Classic setting: EGF, labelled graphs, substitution of vertices. If
C = A ◦ B

C(x) = A(B(X)).

Pólya setting: Cycle index sum, unlabelled graphs, substitution of
vertices. If C = A ◦ B,

ZC = ZA(ZB(s1, s2, s3, . . .), ZB(s2, s4, s6, . . .), . . .)

= ZA(sj → ZB(sj , s2j , s3j , . . .))j≥1

= ZA(sj → Z
[j]
B)j≥1

Our setting: Extended cycle index sum, unlabelled graphs, substitution
of cliques. If C = A ◦k B,

XC = ZA(sλ,j → (Xλ
B)

[j])λ⊢k,j≥1

19/22

Example: composition
Classic setting: EGF, labelled graphs, substitution of vertices. If
C = A ◦ B

C(x) = A(B(X)).

Pólya setting: Cycle index sum, unlabelled graphs, substitution of
vertices. If C = A ◦ B,

ZC = ZA(ZB(s1, s2, s3, . . .), ZB(s2, s4, s6, . . .), . . .)

= ZA(sj → ZB(sj , s2j , s3j , . . .))j≥1

= ZA(sj → Z
[j]
B)j≥1

Our setting: Extended cycle index sum, unlabelled graphs, substitution
of cliques. If C = A ◦k B,

XC = ZA(sλ,j → (Xλ
B)

[j])λ⊢k,j≥1

With cycle-pointing:

XP ⊙i (XA, XQ) := XP(sλ,j → (Xλ
A)

[j], tµ,l → (Xµ
Q)

[l])

20/22

The system



Xλ

G(k)
t,k+1

= k!
α(λ)κ(λ)

∂
∂sλ,1

XGt,k+1
,

Xλ

G(k)
t,k

= ZSet(sj → (Xλj

G(k)
t,k+1◦kG(k)

t,k

)[j])j≥1,

Xλ

G(k)
t,k+1◦kG(k)

t,k

= Xλ

G(k)
t,k+1

(sµ,j → (Xµ

G(k)
t,k

)[j])µ⊢k,j≥1,

XG•k
t,k

=
∑

µ⊢k
α(µ)κ(µ)

k! tµ,1X
µ

G(k)
t,k

+X(Gt,k)
•k
≥2
,

X(Gt,k)
•k
≥2

= X(Gt,k+1)
•k
≥2
(sµ,j → (Xµ

G(k)
t,k

)[j], tµ,j → (Xµ

(G(k)
t,k)•k

)[j])µ⊢k,j≥1

+
∑

µ⊢k
α(µ)κ(µ)

k! sµ,1ZSet•
≥2
(sj → (Xµj

G(k)
t,k+1◦kG(k)

t,k

)[j],

tj → (Xµj

(G(k)
t,k+1◦kG(k)

t,k)•k
)[j])j≥1,

XGt,k
=

∑
λ⊢k

∑
1≤j≤(t+1

k)
∫

1
jtλ,j

XG•k
t,k
(S(λ, j) → 0, T (λ, j) → 0)dsλ,j .

21/22

Results
• [Harary & Palmer (1968)], [Fowler, Gessel, Labelle & Leroux (2002)]:
asymptotic enumeration of unlabelled 2-trees

21/22

Results
• [Harary & Palmer (1968)], [Fowler, Gessel, Labelle & Leroux (2002)]:
asymptotic enumeration of unlabelled 2-trees

• [Gainer-Dewar (2012)], [Gainer-Dewar & Gessel (2014)]: system of
equations determining the OGF of unlabelled k-trees.

21/22

Results
• [Harary & Palmer (1968)], [Fowler, Gessel, Labelle & Leroux (2002)]:
asymptotic enumeration of unlabelled 2-trees

• [Gainer-Dewar (2012)], [Gainer-Dewar & Gessel (2014)]: system of
equations determining the OGF of unlabelled k-trees.

• [Drmota & Yu Jin (2014)]: asymptotic enumeration of unlabelled
k-trees.

21/22

Results
• [Harary & Palmer (1968)], [Fowler, Gessel, Labelle & Leroux (2002)]:
asymptotic enumeration of unlabelled 2-trees

• [Gainer-Dewar (2012)], [Gainer-Dewar & Gessel (2014)]: system of
equations determining the OGF of unlabelled k-trees.

• [Drmota & Yu Jin (2014)]: asymptotic enumeration of unlabelled
k-trees.

This talk: generalisation of previous results.

• [C. & Requilé (2024+)]: system of equations to compute the OGF of
unlabelled chordal graphs with tree-width ≤ t.

21/22

Results
• [Harary & Palmer (1968)], [Fowler, Gessel, Labelle & Leroux (2002)]:
asymptotic enumeration of unlabelled 2-trees

• [Gainer-Dewar (2012)], [Gainer-Dewar & Gessel (2014)]: system of
equations determining the OGF of unlabelled k-trees.

• [Drmota & Yu Jin (2014)]: asymptotic enumeration of unlabelled
k-trees.

This talk: generalisation of previous results.

• [C. & Requilé (2024+)]: system of equations to compute the OGF of
unlabelled chordal graphs with tree-width ≤ t.

Future:

• [C.,Drmota & Requilé (soon?)]: asymptotic enumeration of unlabelled
chordal graphs with bounded tree-width.

22/22

Concluding remarks

What is this machinery useful for?
To enumerate classes of unlabelled graphs that arise from
the identification of cliques.

22/22

Concluding remarks

What is this machinery useful for?
To enumerate classes of unlabelled graphs that arise from
the identification of cliques.

Other applications:
• Counting unlabelled chordal planar graphs.
• The decomposition of 2-connected graphs into 3-connected
components. [Walsh, 1978]
However, Walsh used dissymmetry and with cycle-pointing
we could unroot without subtraction.

22/22

Concluding remarks

What is this machinery useful for?
To enumerate classes of unlabelled graphs that arise from
the identification of cliques.

Other applications:
• Counting unlabelled chordal planar graphs.
• The decomposition of 2-connected graphs into 3-connected
components. [Walsh, 1978]
However, Walsh used dissymmetry and with cycle-pointing
we could unroot without subtraction.

Thank you!

