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Definition. A is a graph obtained from a (k + 1)-clique by
successively adding a new vertex connected to all vertices of an existing

k-clique.
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Introduction

lteratively add a new vertex connected to the vertices of an existing
(complete subgraph).

Definition. A graph is if it has no induced cycle of lengh greater

than 3.
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Definition. The of a graph G is the minimum k such that G

Is the subgraph of a k-tree.
srap 5/22
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Our goal is to determine the number of graphs in the family with size n.

Definition. A is a pair (A, |-|) where
e A is a family of combinatorial objects,
e |-|: A— Nis a size function,

e The number of objects with size n is a,, < oc.

Definition. The Definition. The
(OGF) of (EGF) of
(A,|-]) is the formal power series | (A, |-|) is the formal power series
n _ An n
Alx) = Z anx”. Ax) = Z e
n>0 n>0

Suitable for unlabelled classes. Suitable for labelled classes.
Operations between translate into relations involving their

. The goal is to obtain (a system of) equations
that determine the GF of our class. 6/22
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Decomposition of graphs
iInto k-connected components

The 3-connected components of a 2-connected graph can also be defined,
but the details are a little more involved.
There is also a relation between their generating functions.

Unfortunately, the 4-connected components of 3-connected graphs
cannot be defined in general (in such a way that the decomposition is
unambiguous and well-defined).

However, any k-connected chordal graph admits a decomposition into
(k + 1)-connected components! [\Wormald, 1985]
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“Definition”. through a k-separator:

(OO
O OO

“Definition”. The of a k-connected

chordal graph are obtained by slicing it through all its k-separators
(which are k-cliques).

Proposition. This is well defined (the order does not matter, no
k-separators appear or disappear in the process).

— Note that the (k 4 1)-connected components are the maximal
(k + 1)-connected subgraphs.
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Let Q,(f) be the class of k-connected chordal graphs rooted at an
unlabelled, ordered i-clique.

Consider its multivariate exponential generating function G,gj>(x,xk),
where the variable x;. marks the number of k-cliques. Then, we have that
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Decomposition of chordal graphs
iInto k-connected components

@ onnecte

Let g,(j) be the class of k-connected chordal graphs rooted at an
unlabelled, ordered i-clique.

Consider its multivariate exponential generating function G,gj>(x,xk),
where the variable x;. marks the number of k-cliques. Then, we have that

k-connected

G,gk) (x, ) = exp (G,&?l(x,kag)(x,xk))) .

This generalizes the classical decomposition of connected graphs into
2-connected components. 11/22
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Labelled vs unlabelled

A graph with n vertices is if each vertex carries a different label
in {1,2,...,n}.
In an graph, the vertices are undistinguishable.
2
1 3
3

Unlabelled graphs are usually
harder to count than labelled

2 1 graphs.
1 e Labelled trees (Cayley trees)

[Borchardt, 1860]
e Unlabelled trees (free trees)
[Otter, 1948]
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Counting unlabelled graphs - Pélya theory

1
1
— 5% ) —'(S? + 5152)
3 2 3 labelled graphs
in the class
3
1 5(8? -+ 3182)
— 7 182 Cycle index sum
3 p, Zg(s1,52,53,...)
Theorem [Pdlya 1937] i In our case
The OGF of the unlabelled class ’
. . 3
s given by G(z) = 5(333 txa?) =2
G(x) = Zg(x,2*,2°,...). | 13/22
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Unlabelled trees

Problem!
Rooting is biased in unlabelled graphs.
Not every unlabelled graph of size n gives

rise to n rooted graphs. o’ .

Theorem. [Otter, 1948]
The OGF U(x) of unlabelled trees is given by

As n — oo we have

b3p3/2
W
with b ~ 2.681127 and p ~ 0.338219.

—-3/2  _—n

"] P(z) ~ n

Proof. Using the
15/22
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Cycle-pointing

Definition. A is a pair (G, c) where G € G is an
unlabelled graph and c is a cycle of some automorphism of G.

Theorem. [Bodirsky, Fusy, Kang & Vigerske (2007)]
Every unlabelled graph G € G of size n admits exactly n cycle-pointings.

An unbiased rooting (pointing) operator!

They extend Podlya theory to cycle-pointed graphs. In particular, they
manage to unroot Pdlya trees via cycle-pointing and they recover Otter's

formula.
16/22
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Our class of graphs

(C., Drmota, Noy & Requilé, 2023]: assymptotic enumeration of the
labelled class.

52 An ) as n — 00,

|gt,n

~ Ct TN
for some ¢; > 0 and v > 1
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An extension of Pdlya theory

We need to take into account cycles of cliques, not just vertices.

1
The edges are in a cycle of
length 2.
3 “—r 5 g
1
The new edge is in a cycle of length
; , 1 but different type: it flips itself.

Ny 5(1),15(1),25(1,1),25(2),1

What we do:
e Refinement of cycle index sums to encode cycles of cliques.

e Extend cycle-pointing to cycles of cliques.
18/22
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Example: composition

Classic setting: EGF, labelled graphs, substitution of vertices. If
C=AohB
C(zr) = A(B(X)).

Polya setting: Cycle index sum, unlabelled graphs, substitution of
vertices. If C = Ao B,

ZC — ZA(ZB(Sl, 59,83,... ), ZB(SQ, S4,S86, . - - ), “ o )
= Z_A(Sj — ZB(Sj, 5245835y ))jzl
= Za(s; = ZJ)j>1
Our setting: Extended cycle index sum, unlabelled graphs, substitution
of cliques. If C = Aoy B,
Xe = Za(sn; = (Xg)")aen i1
With cycle-pointing:

Xp O (Xa, Xo) = Xp(sr; = (XDt — (X5)H) 10/22



The system

A _ k! o
XQ,E’QH — a(M)kr(N) 83A,1th,k+17

X/\Uc) = Zsgr(sj — (ngm g<k>)[j])j21>
t,k

t,k4+1CFk

(k) — Xgikk)ﬂ(su,j — (Xgéklg)[j])ﬂ%,jzlv

Xger = ZMHC O‘(“Zf(“’) tu,lXMuf) +X

(G, k).k !
X(Qt,k);kg o X(Qt k+1)°k (SM J (Xu(k))[ i} t (Xébggkk)). )[j]),ul—k,jzl
+ Sk S 51 Zene, (5 (Xm)

9, k—|—1

)[J]’

or G

H 71 .
t —>(X(g£kk)+10 g(k)). ) )3217

(SN, ) = 0, T (N, 5) = 0)dsx;

tk

thk; ZAI—kZl<g< Y f tm
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Results

e [Harary & Palmer (1968)], [Fowler, Gessel, Labelle & Leroux (2002)]:
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Results

e [Harary & Palmer (1968)], [Fowler, Gessel, Labelle & Leroux (2002)]:
asymptotic enumeration of unlabelled

e [Gainer-Dewar (2012)], [Gainer-Dewar & Gessel (2014)]: system of
equations determining the OGF of unlabelled

e [Drmota & Yu Jin (2014)]: asymptotic enumeration of unlabelled

This talk: generalisation of previous results.

o [C. & Requilé (2024+)]: system of equations to compute the OGF of
unlabelled

Future:

e [C. .Drmota & Requilé (soon?)|: asymptotic enumeration of unlabelled
chordal graphs with bounded tree-width.
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Concluding remarks

What is this machinery useful for?
To enumerate classes of unlabelled graphs that arise from
the identification of cliques.
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Concluding remarks

What is this machinery useful for?
To enumerate

Other applications:
e Counting .
e The decomposition of 2-connected graphs into 3-connected
components. [Walsh, 1978]
However, Walsh used dissymmetry and with cycle-pointing
we could unroot without subtraction.

Thank you!
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